Ana Marija
2019-Oct-31 21:08 UTC
[R] How to calculate p value and correlation coefficient for Spearman’s correlation of differential expression data with 40000 permutations?
Hello, I have 3 groups,let's call them g1, g2, g3. Each of them is a result of analysis in between groups of conditions, and g1 looks like this geneSymbol logFC t P.Value adj.P.Val Beta EXykpF1BRREdXnv9Xk MKI67 -0.3115880 -5.521186 5.772137e-07 0.008986062 4.3106665 0Tm7hdRJxd9zoevPlA CCL3L3 0.1708020 4.162115 9.109798e-05 0.508784638 0.6630544 u_M5UdFdhg3lZ.qe64 UBE2G1 -0.1528149 -4.031466 1.430822e-04 0.508784638 0.3354065 lkkLCXcnzL9NXFXTl4 SEL1L3 -0.2138729 -3.977482 1.720517e-04 0.508784638 0.2015945 0Uu3XrB6Bd14qoNeuc ZFP36 0.1667330 3.944917 1.921715e-04 0.508784638 0.1213335 3h7Sgq2i3sAUkxL_n8 ITGB5 0.3419488 3.938960 1.960886e-04 0.508784638 0.1066896 g2 and g2 look the same and each has 15568 entries (genes) How to calculate p value and correlation coefficient for Spearman?s correlation for this data for 40000 permutations? I joined all 3 groups, g1, g2, g3, and extracted only Beta (B) I got this data frame (d), with matching 15568 entries: B.x B.y B EXykpF1BRREdXnv9Xk -4.970533 -4.752771 -5.404054 0Tm7hdRJxd9zoevPlA -4.862168 -5.147294 -3.909654 u_M5UdFdhg3lZ.qe64 -5.368846 -5.396183 -5.405330 lkkLCXcnzL9NXFXTl4 -4.367704 -4.847795 -5.148524 0Uu3XrB6Bd14qoNeuc -5.286592 -4.949305 -5.278798 3h7Sgq2i3sAUkxL_n8 -4.579528 -2.403240 -4.710600 To calculate Spearman?s I could use in R: > cor(d,use="pairwise.complete.obs",method="spearman") B.x B.y B B.x 1.000000000 0.234171932 0.002474729 B.y 0.234171932 1.000000000 -0.005469126 B 0.002474729 -0.005469126 1.000000000 Can someone please tell me what would be the method to use to get correlation coefficient and p value taken in account number of permutations? And am I am correct to use Beta in order to do correlation in between these 3 groups? Thanks!