Dear group, I have two large matrices. Matrix one: is 24776 x 76 (example toy1 dput object given below) Matrix two: is 12913 x 76 (example toy2 dput object given below) Column names of both matrices are identical. My aim is: a. Take each row of toy2 and transform vector into UP (>0) and DN ( <0 ) categories. (kc) b Test association between kc and every row of toy1. My code, given below, although this works but is very slow. I gave dput objects for toy1, toy2 and result matrix. Could you suggest/help me how I can make this faster. Also, how can I select values in result column that are less than 0.001 (p < 0.001). Appreciate your help. Thank you. -Adrian Code: ============================================================================== result <- matrix(NA,nrow=nrow(toy1),ncol=nrow(toy2)) rownames(result) <- rownames(toy1) colnames(result) <- rownames(toy2) for(i in 1:nrow(toy2)){ for(j in 1:nrow(toy1)){ kx = toy2[i,] kc <- rep('NC',length(kx)) kc[ kx >0] <- 'UP' kc[ kx <=0 ] <- 'DN' xpv <- fisher.test(table(kc,toy1[j,]),simulate.p.value = TRUE)$p.value result[j,i] <- xpv } } ============================================================================== ==============================================================================> dput(toy1)structure(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1), .Dim = c(10L, 7L), .Dimnames = list(c("ACAP3", "ACTRT2", "AGRN", "ANKRD65", "ATAD3A", "ATAD3B", "ATAD3C", "AURKAIP1", "B3GALT6", "C1orf159"), c("a", "b", "c", "d", "e", "f", "g")))> dput(toy2)structure(c(-0.242891119688613, -0.0514058216682132, 0.138447212993773, -0.312576648033122, 0.271489918720452, -0.281196468299486, -0.0407160143344565, -0.328353812845287, 0.151667836674511, 0.408596843743938, -0.049351944902924, 0.238586287349249, 0.200571558784821, -0.0737604184858411, 0.245971526254877, 0.24740263959845, -0.161528943131908, 0.197521973013793, 0.0402668125708444, 0.376323735212088, 0.0731550871764204, 0.385270176969893, 0.28953042756208, 0.062587289401188, -0.281187168932979, -0.0202298984561554, -0.0848696970309447, 0.0349676726358973, -0.520484215644868, -0.481991414222996, -0.00698099201388211, 0.135503878341873, 0.156983081312087, 0.320223832092661, 0.34582193394074, 0.0844455960468667, -0.157825604090972, 0.204758250510969, 0.261796072978612, -0.19510450641405, 0.43196474472874, -0.211155577453175, -0.0921641871215187, 0.420950361292263, 0.390261862151936, -0.422273930504427, 0.344653684951627, 0.0378273248838503, 0.197782027324611, 0.0963124876309569, 0.332093167080656, 0.128036554821915, -0.41338065859335, -0.409470440033177, 0.371490567256253, -0.0912549189140141, -0.247451812684234, 0.127741739114639, 0.0856254238844557, 0.515282940316031, -0.25675759521248, 0.333943163209869, 0.604141413840881, 0.0824942299510931, -0.179605710473021, -0.275604207054643, -0.113251154591898, 0.172897837449258, -0.329808795076691, -0.239255324324506), .Dim = c(10L, 7L), .Dimnames = list(c("chr5q23", "chr16q24", "chr8q24", "chr13q11", "chr7p21", "chr10q23", "chr13q13", "chr10q21", "chr1p13", "chrxp21" ), c("a", "b", "c", "d", "e", "f", "g")))>> dput(result)structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.532733633183408, 0.511244377811094, 0.528235882058971, 0.526736631684158, 0.51424287856072, 0.530734632683658, 0.513243378310845, 0.533233383308346, 0.542228885557221, 0.517241379310345, 0.532733633183408, 0.521739130434783, 0.529235382308846, 0.530234882558721, 0.548725637181409, 0.525737131434283, 0.527236381809095, 0.532733633183408, 0.530234882558721, 0.520739630184908, 0.15592203898051, 0.142928535732134, 0.140929535232384, 0.150924537731134, 0.160419790104948, 0.139430284857571, 0.152923538230885, 0.146426786606697, 0.149425287356322, 0.145427286356822, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.282358820589705, 0.293853073463268, 0.262868565717141, 0.290854572713643, 0.276861569215392, 0.288855572213893, 0.282358820589705, 0.292853573213393, 0.286356821589205, 0.271364317841079, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), .Dim = c(10L, 10L), .Dimnames = list(c("ACAP3", "ACTRT2", "AGRN", "ANKRD65", "ATAD3A", "ATAD3B", "ATAD3C", "AURKAIP1", "B3GALT6", "C1orf159"), c("chr5q23", "chr16q24", "chr8q24", "chr13q11", "chr7p21", "chr10q23", "chr13q13", "chr10q21", "chr1p13", "chrxp21" )))
1. I believe Fisher's exact test is computationally intensive and takes a lot of time for large structures, so I would say what you see is what you should expect! (As I'm not an expert on this, confirmation or contradiction by those who are would be appreciated). 2. Your second question on how to select results based on values in another vector/column is very basic R. So it appears that you need to spend some time with an R tutorial or two to learn the basics (unless I have misinterpreted). 3. Please do not repost further. No one is obligated to respond to your posts. Following the posting guide, which you appear to have done, increases the likelihood, but is of course no guarantee. Cheers, Bert Bert Gunter "The trouble with having an open mind is that people keep coming along and sticking things into it." -- Opus (aka Berkeley Breathed in his "Bloom County" comic strip ) On Mon, Feb 11, 2019 at 5:28 PM Adrian Johnson <oriolebaltimore at gmail.com> wrote:> Dear group, > > I have two large matrices. > > Matrix one: is 24776 x 76 (example toy1 dput object given below) > > Matrix two: is 12913 x 76 (example toy2 dput object given below) > > Column names of both matrices are identical. > > My aim is: > > a. Take each row of toy2 and transform vector into UP (>0) and DN ( > <0 ) categories. (kc) > b Test association between kc and every row of toy1. > > My code, given below, although this works but is very slow. > > I gave dput objects for toy1, toy2 and result matrix. > > Could you suggest/help me how I can make this faster. Also, how can I > select values in result column that are less than 0.001 (p < 0.001). > > Appreciate your help. Thank you. > -Adrian > > Code: > > ==============================================================================> > > > result <- matrix(NA,nrow=nrow(toy1),ncol=nrow(toy2)) > > rownames(result) <- rownames(toy1) > colnames(result) <- rownames(toy2) > > for(i in 1:nrow(toy2)){ > for(j in 1:nrow(toy1)){ > kx = toy2[i,] > kc <- rep('NC',length(kx)) > kc[ kx >0] <- 'UP' > kc[ kx <=0 ] <- 'DN' > xpv <- fisher.test(table(kc,toy1[j,]),simulate.p.value = TRUE)$p.value > result[j,i] <- xpv > } > } > > > ==============================================================================> > > > ==============================================================================> > > > dput(toy1) > structure(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, > -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, > -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, > -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, > -1, -1, -1, -1, -1), .Dim = c(10L, 7L), .Dimnames = list(c("ACAP3", > "ACTRT2", "AGRN", "ANKRD65", "ATAD3A", "ATAD3B", "ATAD3C", "AURKAIP1", > "B3GALT6", "C1orf159"), c("a", "b", "c", "d", "e", "f", "g"))) > > > > > dput(toy2) > structure(c(-0.242891119688613, -0.0514058216682132, 0.138447212993773, > -0.312576648033122, 0.271489918720452, -0.281196468299486, > -0.0407160143344565, > -0.328353812845287, 0.151667836674511, 0.408596843743938, > -0.049351944902924, > 0.238586287349249, 0.200571558784821, -0.0737604184858411, > 0.245971526254877, > 0.24740263959845, -0.161528943131908, 0.197521973013793, > 0.0402668125708444, > 0.376323735212088, 0.0731550871764204, 0.385270176969893, 0.28953042756208, > 0.062587289401188, -0.281187168932979, -0.0202298984561554, > -0.0848696970309447, > 0.0349676726358973, -0.520484215644868, -0.481991414222996, > -0.00698099201388211, > 0.135503878341873, 0.156983081312087, 0.320223832092661, 0.34582193394074, > 0.0844455960468667, -0.157825604090972, 0.204758250510969, > 0.261796072978612, > -0.19510450641405, 0.43196474472874, -0.211155577453175, > -0.0921641871215187, > 0.420950361292263, 0.390261862151936, -0.422273930504427, > 0.344653684951627, > 0.0378273248838503, 0.197782027324611, 0.0963124876309569, > 0.332093167080656, > 0.128036554821915, -0.41338065859335, -0.409470440033177, > 0.371490567256253, > -0.0912549189140141, -0.247451812684234, 0.127741739114639, > 0.0856254238844557, > 0.515282940316031, -0.25675759521248, 0.333943163209869, 0.604141413840881, > 0.0824942299510931, -0.179605710473021, -0.275604207054643, > -0.113251154591898, > 0.172897837449258, -0.329808795076691, -0.239255324324506), .Dim = c(10L, > 7L), .Dimnames = list(c("chr5q23", "chr16q24", "chr8q24", "chr13q11", > "chr7p21", "chr10q23", "chr13q13", "chr10q21", "chr1p13", "chrxp21" > ), c("a", "b", "c", "d", "e", "f", "g"))) > > > > > > dput(result) > structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.532733633183408, > 0.511244377811094, 0.528235882058971, 0.526736631684158, 0.51424287856072, > 0.530734632683658, 0.513243378310845, 0.533233383308346, 0.542228885557221, > 0.517241379310345, 0.532733633183408, 0.521739130434783, 0.529235382308846, > 0.530234882558721, 0.548725637181409, 0.525737131434283, 0.527236381809095, > 0.532733633183408, 0.530234882558721, 0.520739630184908, 0.15592203898051, > 0.142928535732134, 0.140929535232384, 0.150924537731134, 0.160419790104948, > 0.139430284857571, 0.152923538230885, 0.146426786606697, 0.149425287356322, > 0.145427286356822, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, > 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.282358820589705, > 0.293853073463268, 0.262868565717141, 0.290854572713643, 0.276861569215392, > 0.288855572213893, 0.282358820589705, 0.292853573213393, 0.286356821589205, > 0.271364317841079, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, > 1, 1, 1, 1, 1, 1), .Dim = c(10L, 10L), .Dimnames = list(c("ACAP3", > "ACTRT2", "AGRN", "ANKRD65", "ATAD3A", "ATAD3B", "ATAD3C", "AURKAIP1", > "B3GALT6", "C1orf159"), c("chr5q23", "chr16q24", "chr8q24", "chr13q11", > "chr7p21", "chr10q23", "chr13q13", "chr10q21", "chr1p13", "chrxp21" > ))) > > ______________________________________________ > R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. >[[alternative HTML version deleted]]
Patrick (Malone Quantitative)
2019-Feb-12 02:18 UTC
[R] faster execution of for loop in Fishers test
Point 1 confirmed. It's an exhaustive permutation test. ?On 2/11/19, 8:46 PM, "R-help on behalf of Bert Gunter" <r-help-bounces at r-project.org on behalf of bgunter.4567 at gmail.com> wrote: 1. I believe Fisher's exact test is computationally intensive and takes a lot of time for large structures, so I would say what you see is what you should expect! (As I'm not an expert on this, confirmation or contradiction by those who are would be appreciated). 2. Your second question on how to select results based on values in another vector/column is very basic R. So it appears that you need to spend some time with an R tutorial or two to learn the basics (unless I have misinterpreted). 3. Please do not repost further. No one is obligated to respond to your posts. Following the posting guide, which you appear to have done, increases the likelihood, but is of course no guarantee. Cheers, Bert Bert Gunter "The trouble with having an open mind is that people keep coming along and sticking things into it." -- Opus (aka Berkeley Breathed in his "Bloom County" comic strip ) On Mon, Feb 11, 2019 at 5:28 PM Adrian Johnson <oriolebaltimore at gmail.com> wrote: > Dear group, > > I have two large matrices. > > Matrix one: is 24776 x 76 (example toy1 dput object given below) > > Matrix two: is 12913 x 76 (example toy2 dput object given below) > > Column names of both matrices are identical. > > My aim is: > > a. Take each row of toy2 and transform vector into UP (>0) and DN ( > <0 ) categories. (kc) > b Test association between kc and every row of toy1. > > My code, given below, although this works but is very slow. > > I gave dput objects for toy1, toy2 and result matrix. > > Could you suggest/help me how I can make this faster. Also, how can I > select values in result column that are less than 0.001 (p < 0.001). > > Appreciate your help. Thank you. > -Adrian > > Code: > > ============================================================================== > > > > result <- matrix(NA,nrow=nrow(toy1),ncol=nrow(toy2)) > > rownames(result) <- rownames(toy1) > colnames(result) <- rownames(toy2) > > for(i in 1:nrow(toy2)){ > for(j in 1:nrow(toy1)){ > kx = toy2[i,] > kc <- rep('NC',length(kx)) > kc[ kx >0] <- 'UP' > kc[ kx <=0 ] <- 'DN' > xpv <- fisher.test(table(kc,toy1[j,]),simulate.p.value = TRUE)$p.value > result[j,i] <- xpv > } > } > > > ============================================================================== > > > > ============================================================================== > > > > dput(toy1) > structure(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, > -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, > -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, > -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, > -1, -1, -1, -1, -1), .Dim = c(10L, 7L), .Dimnames = list(c("ACAP3", > "ACTRT2", "AGRN", "ANKRD65", "ATAD3A", "ATAD3B", "ATAD3C", "AURKAIP1", > "B3GALT6", "C1orf159"), c("a", "b", "c", "d", "e", "f", "g"))) > > > > > dput(toy2) > structure(c(-0.242891119688613, -0.0514058216682132, 0.138447212993773, > -0.312576648033122, 0.271489918720452, -0.281196468299486, > -0.0407160143344565, > -0.328353812845287, 0.151667836674511, 0.408596843743938, > -0.049351944902924, > 0.238586287349249, 0.200571558784821, -0.0737604184858411, > 0.245971526254877, > 0.24740263959845, -0.161528943131908, 0.197521973013793, > 0.0402668125708444, > 0.376323735212088, 0.0731550871764204, 0.385270176969893, 0.28953042756208, > 0.062587289401188, -0.281187168932979, -0.0202298984561554, > -0.0848696970309447, > 0.0349676726358973, -0.520484215644868, -0.481991414222996, > -0.00698099201388211, > 0.135503878341873, 0.156983081312087, 0.320223832092661, 0.34582193394074, > 0.0844455960468667, -0.157825604090972, 0.204758250510969, > 0.261796072978612, > -0.19510450641405, 0.43196474472874, -0.211155577453175, > -0.0921641871215187, > 0.420950361292263, 0.390261862151936, -0.422273930504427, > 0.344653684951627, > 0.0378273248838503, 0.197782027324611, 0.0963124876309569, > 0.332093167080656, > 0.128036554821915, -0.41338065859335, -0.409470440033177, > 0.371490567256253, > -0.0912549189140141, -0.247451812684234, 0.127741739114639, > 0.0856254238844557, > 0.515282940316031, -0.25675759521248, 0.333943163209869, 0.604141413840881, > 0.0824942299510931, -0.179605710473021, -0.275604207054643, > -0.113251154591898, > 0.172897837449258, -0.329808795076691, -0.239255324324506), .Dim = c(10L, > 7L), .Dimnames = list(c("chr5q23", "chr16q24", "chr8q24", "chr13q11", > "chr7p21", "chr10q23", "chr13q13", "chr10q21", "chr1p13", "chrxp21" > ), c("a", "b", "c", "d", "e", "f", "g"))) > > > > > > dput(result) > structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.532733633183408, > 0.511244377811094, 0.528235882058971, 0.526736631684158, 0.51424287856072, > 0.530734632683658, 0.513243378310845, 0.533233383308346, 0.542228885557221, > 0.517241379310345, 0.532733633183408, 0.521739130434783, 0.529235382308846, > 0.530234882558721, 0.548725637181409, 0.525737131434283, 0.527236381809095, > 0.532733633183408, 0.530234882558721, 0.520739630184908, 0.15592203898051, > 0.142928535732134, 0.140929535232384, 0.150924537731134, 0.160419790104948, > 0.139430284857571, 0.152923538230885, 0.146426786606697, 0.149425287356322, > 0.145427286356822, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, > 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.282358820589705, > 0.293853073463268, 0.262868565717141, 0.290854572713643, 0.276861569215392, > 0.288855572213893, 0.282358820589705, 0.292853573213393, 0.286356821589205, > 0.271364317841079, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, > 1, 1, 1, 1, 1, 1), .Dim = c(10L, 10L), .Dimnames = list(c("ACAP3", > "ACTRT2", "AGRN", "ANKRD65", "ATAD3A", "ATAD3B", "ATAD3C", "AURKAIP1", > "B3GALT6", "C1orf159"), c("chr5q23", "chr16q24", "chr8q24", "chr13q11", > "chr7p21", "chr10q23", "chr13q13", "chr10q21", "chr1p13", "chrxp21" > ))) > > ______________________________________________ > R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > [[alternative HTML version deleted]] ______________________________________________ R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.
> On 12 Feb 2019, at 02:45 , Bert Gunter <bgunter.4567 at gmail.com> wrote: > > 1. I believe Fisher's exact test is computationally intensive and takes a > lot of time for large structures, so I would say what you see is what you > should expect! (As I'm not an expert on this, confirmation or contradiction > by those who are would be appreciated). >As I read it, it is mainly 24776 * 12913 = "a lot" of 3x2 tables (320 million of them). Fisher.test has a fair amount of red-tape overhead, so brute force would take a while. Some observations: All tables have a total of 76, so there is only a limited number of possible tables (but will kx always have only three possible values?), so there could be scope for using lookup tables. Also, if it is always 3x2, I think simulation is slower than exact computation. -pd> 2. Your second question on how to select results based on values in another > vector/column is very basic R. So it appears that you need to spend some > time with an R tutorial or two to learn the basics (unless I have > misinterpreted). > > 3. Please do not repost further. No one is obligated to respond to your > posts. Following the posting guide, which you appear to have done, > increases the likelihood, but is of course no guarantee. > > Cheers, > Bert > > > Bert Gunter > > "The trouble with having an open mind is that people keep coming along and > sticking things into it." > -- Opus (aka Berkeley Breathed in his "Bloom County" comic strip ) > > > On Mon, Feb 11, 2019 at 5:28 PM Adrian Johnson <oriolebaltimore at gmail.com> > wrote: > >> Dear group, >> >> I have two large matrices. >> >> Matrix one: is 24776 x 76 (example toy1 dput object given below) >> >> Matrix two: is 12913 x 76 (example toy2 dput object given below) >> >> Column names of both matrices are identical. >> >> My aim is: >> >> a. Take each row of toy2 and transform vector into UP (>0) and DN ( >> <0 ) categories. (kc) >> b Test association between kc and every row of toy1. >> >> My code, given below, although this works but is very slow. >> >> I gave dput objects for toy1, toy2 and result matrix. >> >> Could you suggest/help me how I can make this faster. Also, how can I >> select values in result column that are less than 0.001 (p < 0.001). >> >> Appreciate your help. Thank you. >> -Adrian >> >> Code: >> >> ==============================================================================>> >> >> >> result <- matrix(NA,nrow=nrow(toy1),ncol=nrow(toy2)) >> >> rownames(result) <- rownames(toy1) >> colnames(result) <- rownames(toy2) >> >> for(i in 1:nrow(toy2)){ >> for(j in 1:nrow(toy1)){ >> kx = toy2[i,] >> kc <- rep('NC',length(kx)) >> kc[ kx >0] <- 'UP' >> kc[ kx <=0 ] <- 'DN' >> xpv <- fisher.test(table(kc,toy1[j,]),simulate.p.value = TRUE)$p.value >> result[j,i] <- xpv >> } >> } >> >> >> ==============================================================================>> >> >> >> ==============================================================================>> >> >>> dput(toy1) >> structure(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, >> -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, >> -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, >> -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, >> -1, -1, -1, -1, -1), .Dim = c(10L, 7L), .Dimnames = list(c("ACAP3", >> "ACTRT2", "AGRN", "ANKRD65", "ATAD3A", "ATAD3B", "ATAD3C", "AURKAIP1", >> "B3GALT6", "C1orf159"), c("a", "b", "c", "d", "e", "f", "g"))) >> >> >> >>> dput(toy2) >> structure(c(-0.242891119688613, -0.0514058216682132, 0.138447212993773, >> -0.312576648033122, 0.271489918720452, -0.281196468299486, >> -0.0407160143344565, >> -0.328353812845287, 0.151667836674511, 0.408596843743938, >> -0.049351944902924, >> 0.238586287349249, 0.200571558784821, -0.0737604184858411, >> 0.245971526254877, >> 0.24740263959845, -0.161528943131908, 0.197521973013793, >> 0.0402668125708444, >> 0.376323735212088, 0.0731550871764204, 0.385270176969893, 0.28953042756208, >> 0.062587289401188, -0.281187168932979, -0.0202298984561554, >> -0.0848696970309447, >> 0.0349676726358973, -0.520484215644868, -0.481991414222996, >> -0.00698099201388211, >> 0.135503878341873, 0.156983081312087, 0.320223832092661, 0.34582193394074, >> 0.0844455960468667, -0.157825604090972, 0.204758250510969, >> 0.261796072978612, >> -0.19510450641405, 0.43196474472874, -0.211155577453175, >> -0.0921641871215187, >> 0.420950361292263, 0.390261862151936, -0.422273930504427, >> 0.344653684951627, >> 0.0378273248838503, 0.197782027324611, 0.0963124876309569, >> 0.332093167080656, >> 0.128036554821915, -0.41338065859335, -0.409470440033177, >> 0.371490567256253, >> -0.0912549189140141, -0.247451812684234, 0.127741739114639, >> 0.0856254238844557, >> 0.515282940316031, -0.25675759521248, 0.333943163209869, 0.604141413840881, >> 0.0824942299510931, -0.179605710473021, -0.275604207054643, >> -0.113251154591898, >> 0.172897837449258, -0.329808795076691, -0.239255324324506), .Dim = c(10L, >> 7L), .Dimnames = list(c("chr5q23", "chr16q24", "chr8q24", "chr13q11", >> "chr7p21", "chr10q23", "chr13q13", "chr10q21", "chr1p13", "chrxp21" >> ), c("a", "b", "c", "d", "e", "f", "g"))) >>> >> >> >>> dput(result) >> structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.532733633183408, >> 0.511244377811094, 0.528235882058971, 0.526736631684158, 0.51424287856072, >> 0.530734632683658, 0.513243378310845, 0.533233383308346, 0.542228885557221, >> 0.517241379310345, 0.532733633183408, 0.521739130434783, 0.529235382308846, >> 0.530234882558721, 0.548725637181409, 0.525737131434283, 0.527236381809095, >> 0.532733633183408, 0.530234882558721, 0.520739630184908, 0.15592203898051, >> 0.142928535732134, 0.140929535232384, 0.150924537731134, 0.160419790104948, >> 0.139430284857571, 0.152923538230885, 0.146426786606697, 0.149425287356322, >> 0.145427286356822, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, >> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.282358820589705, >> 0.293853073463268, 0.262868565717141, 0.290854572713643, 0.276861569215392, >> 0.288855572213893, 0.282358820589705, 0.292853573213393, 0.286356821589205, >> 0.271364317841079, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, >> 1, 1, 1, 1, 1, 1), .Dim = c(10L, 10L), .Dimnames = list(c("ACAP3", >> "ACTRT2", "AGRN", "ANKRD65", "ATAD3A", "ATAD3B", "ATAD3C", "AURKAIP1", >> "B3GALT6", "C1orf159"), c("chr5q23", "chr16q24", "chr8q24", "chr13q11", >> "chr7p21", "chr10q23", "chr13q13", "chr10q21", "chr1p13", "chrxp21" >> ))) >> >> ______________________________________________ >> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see >> https://stat.ethz.ch/mailman/listinfo/r-help >> PLEASE do read the posting guide >> http://www.R-project.org/posting-guide.html >> and provide commented, minimal, self-contained, reproducible code. >> > > [[alternative HTML version deleted]] > > ______________________________________________ > R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code.-- Peter Dalgaard, Professor, Center for Statistics, Copenhagen Business School Solbjerg Plads 3, 2000 Frederiksberg, Denmark Phone: (+45)38153501 Office: A 4.23 Email: pd.mes at cbs.dk Priv: PDalgd at gmail.com