Uri Blasbalg
2017-Apr-23 13:53 UTC
[R] question: mediation results are not in line with compression of glmm consisted models
hi all, I'll begin with my two question and all the related information (description of the research and the data and full output) will follow. 1. When i execute model1 (glmm with random intercept only for subjects): predictor (suppBin) and outcome (DtlsBinUp) and pre-intervention variables, it results with significance . when I carry out model 2: add the mediator (rlctDown) too as a predictor, the association shown in the model1 isn't significant anymore (suppBin-DtlsBinup), and for the mediator and outcome it is (rlctDown-dtlsBinup), with higher coefficient. that should imply for full mediation, meaning there isn't direct effect between the predictor and the outcome, only indirect. but when i the test mediation model (monte carlo method), I gel significant effect for total effect, direct effect and the indirect effect. how can it be that the monte carlo contradicts what shown when substracting model1 from model2? what am i missing? 2.i am having trouble in interpreting the values of the effects estimations in the monte carlo test. I understood the coefficients for the glmm as log odds that after transforming using exponential function can be understood as odds and may also be expressed as probabilities. but the estimates in the monte carlo output are much lower than those in the glmm output. so how should they be understood. following are description and output, thank you uri. ********** predictor - outcome Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod'] Family: binomial ( logit ) Formula: dtlsBinUp ~ suppBin * qu + ageS + gender + (1 | PD) Data: hypoTest Control: glmerControl(tolPwrss = 0.001) AIC BIC logLik deviance df.resid 15351.9 15406.1 -7669.0 15337.9 17111 Scaled residuals: Min 1Q Median 3Q Max -0.6655 -0.5281 -0.5140 -0.1889 5.4472 Random effects: Groups Name Variance Std.Dev. PD (Intercept) 0 0 Number of obs: 17118, groups: PD, 200 Fixed effects: Estimate Std. Error z value Pr(>|z|) (Intercept) -3.20574 0.14668 -21.856 < 2e-16 *** suppBin 0.57468 0.15930 3.607 0.000309 *** qu 2.02646 0.10902 18.588 < 2e-16 *** ageS -0.09564 0.09923 -0.964 0.335151 gender -0.05598 0.04141 -1.352 0.176458 suppBin:qu -0.15165 0.17283 -0.877 0.380250 --- Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1 Correlation of Fixed Effects: (Intr) suppBn qu ageS gender suppBin -0.495 qu -0.718 0.655 ageS -0.673 0.010 0.002 gender -0.179 0.008 0.034 0.065 suppBin:qu 0.456 -0.922 -0.631 -0.004 -0.028 ********** predictor, mediator - outcome Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod'] Family: binomial ( logit ) Formula: dtlsBinUp ~ suppBin * qu + rlctDown + ageS + gender + (1 | PD) Data: hypoTest Control: glmerControl(tolPwrss = 0.001) AIC BIC logLik deviance df.resid 14114.1 14176.0 -7049.0 14098.1 17110 Scaled residuals: Min 1Q Median 3Q Max -1.5239 -0.4638 -0.4552 -0.1487 6.8990 Random effects: Groups Name Variance Std.Dev. PD (Intercept) 0 0 Number of obs: 17118, groups: PD, 200 Fixed effects: Estimate Std. Error z value Pr(>|z|) (Intercept) -3.69635 0.15247 -24.24 <2e-16 *** suppBin 0.14896 0.16475 0.90 0.366 qu 2.26040 0.11289 20.02 <2e-16 *** rlctDown 2.06709 0.05947 34.76 <2e-16 *** ageS -0.10680 0.10432 -1.02 0.306 gender -0.02293 0.04360 -0.53 0.599 suppBin:qu 0.13720 0.17963 0.76 0.445 --- Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1 Correlation of Fixed Effects: (Intr) suppBn qu rlctDw ageS gender suppBin -0.462 qu -0.708 0.629 rlctDown -0.159 -0.088 0.143 ageS -0.665 0.000 -0.018 -0.005 gender -0.184 0.008 0.035 0.024 0.066 suppBin:qu 0.426 -0.916 -0.607 0.062 0.005 -0.029 ********** predictor, mediator - outcome (function "mediate" from packege "mediation" ** script (syntax): med.out.8.1.2.1 <- mediate(model3.1, model8.1.2.med, treat = "suppBin", mediator = "rlctDown", sims = 1000) Causal Mediation Analysis Quasi-Bayesian Confidence Intervals Mediator Groups: PD Outcome Groups: PD Output Based on Overall Averages Across Groups Estimate 95% CI Lower 95% CI Upper p-value ACME (control) 0.0401 0.0321 0.0481 0 ACME (treated) 0.0420 0.0338 0.0506 0 ADE (control) 0.0376 0.0178 0.0575 0 ADE (treated) 0.0395 0.0189 0.0595 0 Total Effect 0.0796 0.0580 0.1013 0 Prop. Mediated (control) 0.5015 0.3890 0.6852 0 Prop. Mediated (treated) 0.5276 0.4127 0.7081 0 ACME (average) 0.0410 0.0329 0.0492 0 ADE (average) 0.0385 0.0183 0.0584 0 Prop. Mediated (average) 0.5145 0.3999 0.6961 0 Sample Size Used: 17118 Simulations: 1000 [[alternative HTML version deleted]]
Bert Gunter
2017-Apr-23 18:45 UTC
[R] question: mediation results are not in line with compression of glmm consisted models
This is not a statistical help site, and your questions appear to be about statistics, not programming in R. I would suggest that you get local statistical help, but you might try posting on a stats.stackexchange.com for remote help. -- Bert Bert Gunter "The trouble with having an open mind is that people keep coming along and sticking things into it." -- Opus (aka Berkeley Breathed in his "Bloom County" comic strip ) On Sun, Apr 23, 2017 at 6:53 AM, Uri Blasbalg <uriblasbalg at gmail.com> wrote:> hi all, > I'll begin with my two question and all the related information > (description of the research and the data and full output) will follow. > > 1. When i execute model1 (glmm with random intercept only for subjects): > predictor (suppBin) and outcome (DtlsBinUp) and pre-intervention variables, > it results with significance . when I carry out model 2: add the mediator > (rlctDown) too as a predictor, the association shown in the model1 isn't > significant anymore (suppBin-DtlsBinup), and for the mediator and outcome > it is (rlctDown-dtlsBinup), with higher coefficient. that should imply for > full mediation, meaning there isn't direct effect between the predictor and > the outcome, only indirect. but when i the test mediation model (monte > carlo method), I gel significant effect for total effect, direct effect and > the indirect effect. how can it be that the monte carlo contradicts what > shown when substracting model1 from model2? what am i missing? > > 2.i am having trouble in interpreting the values of the effects estimations > in the monte carlo test. I understood the coefficients for the glmm > as log odds that after transforming using exponential function can be > understood as odds and may also be expressed as probabilities. but > the estimates in the monte carlo output are much lower than those in the > glmm output. so how should they be understood. > > following are description and output, > thank you > uri. > > > > > > ********** predictor - outcome > > > Generalized linear mixed model fit by maximum likelihood (Laplace > Approximation) ['glmerMod'] > Family: binomial ( logit ) > Formula: dtlsBinUp ~ suppBin * qu + ageS + gender + (1 | PD) > Data: hypoTest > Control: glmerControl(tolPwrss = 0.001) > > AIC BIC logLik deviance df.resid > 15351.9 15406.1 -7669.0 15337.9 17111 > > Scaled residuals: > Min 1Q Median 3Q Max > -0.6655 -0.5281 -0.5140 -0.1889 5.4472 > > Random effects: > Groups Name Variance Std.Dev. > PD (Intercept) 0 0 > Number of obs: 17118, groups: PD, 200 > > Fixed effects: > Estimate Std. Error z value Pr(>|z|) > (Intercept) -3.20574 0.14668 -21.856 < 2e-16 *** > suppBin 0.57468 0.15930 3.607 0.000309 *** > qu 2.02646 0.10902 18.588 < 2e-16 *** > ageS -0.09564 0.09923 -0.964 0.335151 > gender -0.05598 0.04141 -1.352 0.176458 > suppBin:qu -0.15165 0.17283 -0.877 0.380250 > --- > Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1 > > Correlation of Fixed Effects: > (Intr) suppBn qu ageS gender > suppBin -0.495 > qu -0.718 0.655 > ageS -0.673 0.010 0.002 > gender -0.179 0.008 0.034 0.065 > suppBin:qu 0.456 -0.922 -0.631 -0.004 -0.028 > > > > ********** predictor, mediator - outcome > > > Generalized linear mixed model fit by maximum likelihood (Laplace > Approximation) ['glmerMod'] > Family: binomial ( logit ) > Formula: dtlsBinUp ~ suppBin * qu + rlctDown + ageS + gender + (1 | PD) > Data: hypoTest > Control: glmerControl(tolPwrss = 0.001) > > AIC BIC logLik deviance df.resid > 14114.1 14176.0 -7049.0 14098.1 17110 > > Scaled residuals: > Min 1Q Median 3Q Max > -1.5239 -0.4638 -0.4552 -0.1487 6.8990 > > Random effects: > Groups Name Variance Std.Dev. > PD (Intercept) 0 0 > Number of obs: 17118, groups: PD, 200 > > Fixed effects: > Estimate Std. Error z value Pr(>|z|) > (Intercept) -3.69635 0.15247 -24.24 <2e-16 *** > suppBin 0.14896 0.16475 0.90 0.366 > qu 2.26040 0.11289 20.02 <2e-16 *** > rlctDown 2.06709 0.05947 34.76 <2e-16 *** > ageS -0.10680 0.10432 -1.02 0.306 > gender -0.02293 0.04360 -0.53 0.599 > suppBin:qu 0.13720 0.17963 0.76 0.445 > --- > Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1 > > Correlation of Fixed Effects: > (Intr) suppBn qu rlctDw ageS gender > suppBin -0.462 > qu -0.708 0.629 > rlctDown -0.159 -0.088 0.143 > ageS -0.665 0.000 -0.018 -0.005 > gender -0.184 0.008 0.035 0.024 0.066 > suppBin:qu 0.426 -0.916 -0.607 0.062 0.005 -0.029 > > > > > ********** predictor, mediator - outcome (function "mediate" from packege > "mediation" > > ** script (syntax): > med.out.8.1.2.1 <- mediate(model3.1, model8.1.2.med, treat = "suppBin", > mediator = "rlctDown", > sims = 1000) > > > Causal Mediation Analysis > > Quasi-Bayesian Confidence Intervals > > Mediator Groups: PD > > Outcome Groups: PD > > Output Based on Overall Averages Across Groups > > Estimate 95% CI Lower 95% CI Upper p-value > ACME (control) 0.0401 0.0321 0.0481 0 > ACME (treated) 0.0420 0.0338 0.0506 0 > ADE (control) 0.0376 0.0178 0.0575 0 > ADE (treated) 0.0395 0.0189 0.0595 0 > Total Effect 0.0796 0.0580 0.1013 0 > Prop. Mediated (control) 0.5015 0.3890 0.6852 0 > Prop. Mediated (treated) 0.5276 0.4127 0.7081 0 > ACME (average) 0.0410 0.0329 0.0492 0 > ADE (average) 0.0385 0.0183 0.0584 0 > Prop. Mediated (average) 0.5145 0.3999 0.6961 0 > > Sample Size Used: 17118 > > > Simulations: 1000 > > [[alternative HTML version deleted]] > > ______________________________________________ > R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code.