Hi everyone,
I'm running a bayesian regression using the package MCMCglmm (Hadfield 2010)
and to reach a normal posterior distribution of estimates, I increased the
number of iteration as well as the burnin threshold. However, it had unexpected
outcomes. Although it improved posterior distribution, it also increased
dramatically the value of estimates and decrease DIC.?
Here an example:>head(spring)
pres ? large_road ? ?small_road ? ?cab0 ? ? ? ? ? ? 2011 ? ? ? ? ? ? ? ?32 ? ? ?
? ? 781 ? ? ? ? ? ? ?102 ? ? ? ? ? ? ? 179 ? ? ? ? ?2040 ? ? ? ? ? ? ?1256 ? ? ?
? ? ? 654 ? ? ? ? ?9841 ? ? ? ? ? ? ?187 ? ? ? ? ? ? ? 986 ? ? ? ? ?7560 ? ? ? ?
? ? ? 21 ? ? ? ? ? ? ? ?438 ? ? ? ? ? 571 ? ? ? ? ? ? ? 13 ? ? ? ? ? ? ? ? ? 5 ?
? ? ? ? 439 ? ?>#pres is presence/absence data and other variable are distance to these
features
>## with?200,000 iteration and 30,000 burnin>prior <- list(R = list(V =
1, nu=0.002))>sp.simple <- MCMCglmm(pres ~ large_road + cab +
small_road,?family = "categorical", nitt = 200000, thin = 200, burnin
= 30000,?????????????????????????????????????????????data = spring,?prior =
prior, verbose = FALSE, pr = TRUE)
>summary(sp.simple)
?Iterations = 30001:199801?Thinning interval ?= 200?Sample size ?= 850?
?DIC: 14045.31?
?R-structure: ?~units
? ? ? ? ?post.mean ? ? l-95% ? ? CI u-95% ? ? CI eff.sampunits ? ? 294.7 ? ? ? ?
1.621 ? ? ? ?621.9 ? ? ? ? ? ?1.982
?Location effects: pres ~ large + cab + small + Coupe_0_5 + Regeneration +
Res_mature + DH + Autre + Eau + Pert_nonregen + MF + Coupe_6_20?
? ? ? ? ? ? ? ? ? ? ?post.mean ? ? l-95% ? ? ? CI ?u-95% ? ? CI eff.samp ? ?
pMCMC ??(Intercept) ? ? 5.76781 ? ? ?0.77622 ? ? ? 9.24375 ? ? ? ? ?1.829 ? ? ?
? ? ?<0.001 **large ? ? ? ? ? ? 0.37487 ? ? ?0.02692 ? ? ? 0.75282 ? ? ? ? ?
3.310 ? ? ? ? ? ?<0.001 **cab ? ? ? ? ? ? ? 0.94639 ? ? ?0.09906 ? ? ?
1.57939 ? ? ? ? ? 2.096 ? ? ? ? ? ?<0.001 **small ? ? ? ? ? -1.62192 ? ?
-2.60873 ? ? ?-0.20191 ? ? ? ? ? 2.002 ? ? ? ? ? ?<0.001 **
>## with?1,000,000 iteration and 500,000 burnin>prior <- list(R =
list(V = 1, nu=0.002))>sp.simple <- MCMCglmm(pres ~ large_road + cab +
small_road,?family = "categorical", nitt = 1000000, thin = 200, burnin
= 500000,?????????????????????????????????????????????data = spring,?prior =
prior, verbose = FALSE, pr = TRUE)
>summary(sp.simple)
?Iterations = 500001:999801?Thinning interval ?= 200?Sample size ?= 2500?
?DIC: 858.6316?
?R-structure: ?~units
? ? ? ? ?post.mean ? ?l-95% ? CI u-95% ? ? CI eff.sampunits ? ? 26764 ? ? ?17548
? ? ?34226 ? ? ? ? ? ? 124.5
?Location effects: pres ~ large_road + cab + small_road?
? ? ? ? ? ? ? ? ? ?post.mean ? ?l-95% ? ?CI u-95% ? ?CI eff.samp ? ? ?pMCMC ?
?(Intercept) ? ? 60.033 ? ? ?47.360 ? ? 70.042 ? ? ? ? ?137.9 ? ? ? ? ?
?<4e-04 ***large_road ? ? ?3.977 ? ? ? ?1.279 ? ? ? 6.616 ? ? ? ?1484.6 ? ? ?
? ? ?0.0080 **?cab_road ? ? ? ?9.913 ? ? ? ?6.761 ? ? 13.020 ? ? ? ? ?333.7 ? ?
? ? ? ?<4e-04 ***small ? ? ? ? ? -16.945 ? ? -20.694 ? ?-13.492 ? ? ? ?
?194.9 ? ? ? ? ? ?<4e-04 ***
?
I'm then wandering if it is because more iteration produce better estimates
and then a model that had a better fit with the data.
Anyone can help me??
R?mi
[[alternative HTML version deleted]]