DIGHE, NILESH [AG/2362]
2016-Jan-05 16:48 UTC
[R] store results from loop into a dataframe
Dear R users: I am trying to create a function that will loop over three dependent variables in my aov model, and then get the HSD.test for each variable. I like to store the results from each loop in a data frame. When I run my function (funx) on my data (dat), results from only yield gets populated in all three columns of the dataframe. I am not able to store the results for each variable in a dataframe. Any help will be highly appreciated. function (x) { trait_names <- c("yield", "lp", "lnth") d = data.frame(yield = rep(0, 6), lp = rep(0, 6), lnth = rep(0, 6)) for (i in trait_names) { mod <- aov(formula(paste(trait_names, "~ PEDIGREE + FIELD + PEDIGREE*FIELD + FIELD%in%REP")), data = x) out <- HSD.test(mod, "PEDIGREE", group = TRUE, console = FALSE) d[, i] <- out$means[, 1] } d } structure(list(FIELD = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L), .Label = c("FYLS", "HKI1", "KIS1", "LMLS", "SELS", "SGL1"), class = "factor"), REP = structure(c(1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L), .Label = c("1", "2", "3"), class = "factor"), PEDIGREE = structure(c(1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L), .Label = c("A", "B", "C", "D", "E", "F"), class = "factor"), yield = c(1003L, 923L, 1268L, 1226L, 1059L, 1150L, 900L, 816L, 1072L, 1158L, 1026L, 1299L, 1083L, 1038L, 1236L, 1287L, 1270L, 1612L, 1513L, 1676L, 1504L, 1417L, 1932L, 1644L, 1293L, 1542L, 1452L, 1180L, 1248L, 1764L, 1326L, 1877L, 1788L, 1606L, 1809L, 1791L, 2294L, 2315L, 2320L, 2083L, 1895L, 2284L, 2000L, 2380L, 1952L, 2414L, 2354L, 2095L, 2227L, 2093L, 2019L, 2505L, 2410L, 2287L, 2507L, 2507L, 2349L, 2162L, 2108L, 2319L, 2028L, 1947L, 2352L, 2698L, 2369L, 1798L, 2422L, 2509L, 2234L, 2451L, 2139L, 1957L, 799L, 787L, 701L, 781L, 808L, 582L, 770L, 752L, 801L, 865L, 608L, 620L, 677L, 775L, 722L, 1030L, 606L, 729L, 1638L, 1408L, 1045L, 1685L, 1109L, 1210L, 1419L, 1048L, 1129L, 1549L, 1325L, 1315L, 1838L, 1066L, 1295L, 1499L, 1472L, 1139L), lp = c(NA, NA, 46.31, NA, NA, 43.8, NA, NA, 43.91, NA, NA, 44.47, NA, NA, 45.16, NA, NA, 43.57, 40.65, NA, NA, 40.04, NA, NA, 41.33, NA, NA, 40.75, NA, NA, 42.04, NA, NA, 40.35, NA, NA, 43.682, NA, NA, 41.712, NA, NA, 42.566, NA, NA, 43.228, NA, NA, 43.63, NA, NA, 42.058, NA, NA, NA, 45.19, NA, NA, 41.91, NA, NA, 43.86, NA, NA, 44.48, NA, NA, 44.34, NA, NA, 43.03, NA, NA, NA, 44.08, NA, NA, 41.39, NA, NA, 42.48, NA, NA, 44.13, NA, NA, 43.39, NA, NA, 42.82, 42.18, NA, NA, 41.42, NA, NA, 41.25, NA, NA, 42.31, NA, NA, 43.22, NA, NA, 40.52, NA, NA), lnth = c(NA, NA, 1.151, NA, NA, 1.135, NA, NA, 1.109, NA, NA, 1.117, NA, NA, 1.107, NA, NA, 1.196, 1.255, NA, NA, 1.229, NA, NA, 1.158, NA, NA, 1.214, NA, NA, 1.152, NA, NA, 1.194, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 1.2, NA, NA, 1.219, NA, NA, 1.115, NA, NA, 1.205, NA, NA, 1.238, NA, NA, 1.244, NA, NA, NA, 1.096, NA, NA, 1.021, NA, NA, 1.055, NA, NA, 1.058, NA, NA, 1.026, NA, NA, 1.115, 1.202, NA, NA, 1.161, NA, NA, 1.168, NA, NA, 1.189, NA, NA, 1.204, NA, NA, 1.277, NA, NA)), .Names = c("FIELD", "REP", "PEDIGREE", "yield", "lp", "lnth" ), row.names = c(NA, -108L), class = "data.frame") R version 3.2.1 (2015-06-18) Platform: i386-w64-mingw32/i386 (32-bit) Running under: Windows 7 x64 (build 7601) Service Pack 1 locale: [1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252 [3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C [5] LC_TIME=English_United States.1252 attached base packages: [1] stats graphics grDevices utils datasets methods base other attached packages: [1] agricolae_1.2-1 asreml_3.0 lattice_0.20-31 ggplot2_1.0.1 dplyr_0.4.2 plyr_1.8.3 loaded via a namespace (and not attached): [1] spdep_0.5-88 Rcpp_0.12.1 cluster_2.0.2 magrittr_1.5 splines_3.2.1 MASS_7.3-41 [7] munsell_0.4.2 colorspace_1.2-6 R6_2.0.1 stringr_1.0.0 tools_3.2.1 parallel_3.2.1 [13] grid_3.2.1 gtable_0.1.2 nlme_3.1-122 coda_0.17-1 DBI_0.3.1 deldir_0.1-9 [19] lazyeval_0.1.10 assertthat_0.1 digest_0.6.8 Matrix_1.2-1 reshape2_1.4.1 sp_1.2-1 [25] stringi_1.0-1 klaR_0.6-12 LearnBayes_2.15 scales_0.3.0 boot_1.3-17 combinat_0.0-8 [31] proto_0.3-10 Thanks. Nilesh Nilesh Dighe (806)-252-7492 (Cell) (806)-741-2019 (Office) This e-mail message may contain privileged and/or confidential information, and is intended to be received only by persons entitled to receive such information. If you have received this e-mail in error, please notify the sender immediately. Please delete it and all attachments from any servers, hard drives or any other media. Other use of this e-mail by you is strictly prohibited. All e-mails and attachments sent and received are subject to monitoring, reading and archival by Monsanto, including its subsidiaries. The recipient of this e-mail is solely responsible for checking for the presence of "Viruses" or other "Malware". Monsanto, along with its subsidiaries, accepts no liability for any damage caused by any such code transmitted by or accompanying this e-mail or any attachment. The information contained in this email may be subject to the export control laws and regulations of the United States, potentially including but not limited to the Export Administration Regulations (EAR) and sanctions regulations issued by the U.S. Department of Treasury, Office of Foreign Asset Controls (OFAC). As a recipient of this information you are obligated to comply with all applicable U.S. export laws and regulations. [[alternative HTML version deleted]]
Leaving aside the question of whether this is the best way to approach your problem (unlikely), there's a couple of errors in your code involving indexing. Once fixed, the code demonstrates some errors in your use of HSD.test that will be harder for you to deal with. Thanks for the complete reproducible example. fun2 <- function (x) { trait_names <- c("yield", "lp", "lnth") d = data.frame(yield = rep(0, 6), lp = rep(0, 6), lnth = rep(0, 6)) for (i in trait_names) { # your formula has all the trait names, not the selected one # mod <- aov(formula(paste(trait_names, "~ PEDIGREE + FIELD + PEDIGREE*FIELD + FIELD%in%REP")), data = x) mod <- aov(formula(paste(i, "~ PEDIGREE + FIELD + PEDIGREE*FIELD + FIELD%in%REP")), data = x) out <- HSD.test(mod, "PEDIGREE", group = TRUE, console = FALSE) # you're indexing by the trait name, instead of its position # d[, i] <- out$means[, 1] d[, which(trait_names == i)] <- out$means[, 1] } d } Sarah On Tue, Jan 5, 2016 at 11:48 AM, DIGHE, NILESH [AG/2362] <nilesh.dighe at monsanto.com> wrote:> Dear R users: > > I am trying to create a function that will loop over three dependent variables in my aov model, and then get the HSD.test for each variable. I like to store the results from each loop in a data frame. > > > > When I run my function (funx) on my data (dat), results from only yield gets populated in all three columns of the dataframe. I am not able to store the results for each variable in a dataframe. Any help will be highly appreciated. > > > > > > > > function (x) > > { > > trait_names <- c("yield", "lp", "lnth") > > d = data.frame(yield = rep(0, 6), lp = rep(0, 6), lnth = rep(0, > > 6)) > > for (i in trait_names) { > > mod <- aov(formula(paste(trait_names, "~ PEDIGREE + FIELD + PEDIGREE*FIELD + FIELD%in%REP")), > > data = x) > > out <- HSD.test(mod, "PEDIGREE", group = TRUE, console = FALSE) > > d[, i] <- out$means[, 1] > > } > > d > > } > > > structure(list(FIELD = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, > 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, > 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, > 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, > 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, > 6L, 6L, 6L, 6L, 6L), .Label = c("FYLS", "HKI1", "KIS1", "LMLS", > "SELS", "SGL1"), class = "factor"), REP = structure(c(1L, 2L, > 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, > 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, > 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, > 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, > 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, > 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, > 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L), .Label = c("1", "2", > "3"), class = "factor"), PEDIGREE = structure(c(1L, 1L, 1L, 2L, > 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 1L, 1L, > 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, > 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, > 6L, 6L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, > 5L, 6L, 6L, 6L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, > 5L, 5L, 5L, 6L, 6L, 6L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, > 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L), .Label = c("A", "B", "C", "D", > "E", "F"), class = "factor"), yield = c(1003L, 923L, 1268L, 1226L, > 1059L, 1150L, 900L, 816L, 1072L, 1158L, 1026L, 1299L, 1083L, > 1038L, 1236L, 1287L, 1270L, 1612L, 1513L, 1676L, 1504L, 1417L, > 1932L, 1644L, 1293L, 1542L, 1452L, 1180L, 1248L, 1764L, 1326L, > 1877L, 1788L, 1606L, 1809L, 1791L, 2294L, 2315L, 2320L, 2083L, > 1895L, 2284L, 2000L, 2380L, 1952L, 2414L, 2354L, 2095L, 2227L, > 2093L, 2019L, 2505L, 2410L, 2287L, 2507L, 2507L, 2349L, 2162L, > 2108L, 2319L, 2028L, 1947L, 2352L, 2698L, 2369L, 1798L, 2422L, > 2509L, 2234L, 2451L, 2139L, 1957L, 799L, 787L, 701L, 781L, 808L, > 582L, 770L, 752L, 801L, 865L, 608L, 620L, 677L, 775L, 722L, 1030L, > 606L, 729L, 1638L, 1408L, 1045L, 1685L, 1109L, 1210L, 1419L, > 1048L, 1129L, 1549L, 1325L, 1315L, 1838L, 1066L, 1295L, 1499L, > 1472L, 1139L), lp = c(NA, NA, 46.31, NA, NA, 43.8, NA, NA, 43.91, > NA, NA, 44.47, NA, NA, 45.16, NA, NA, 43.57, 40.65, NA, NA, 40.04, > NA, NA, 41.33, NA, NA, 40.75, NA, NA, 42.04, NA, NA, 40.35, NA, > NA, 43.682, NA, NA, 41.712, NA, NA, 42.566, NA, NA, 43.228, NA, > NA, 43.63, NA, NA, 42.058, NA, NA, NA, 45.19, NA, NA, 41.91, > NA, NA, 43.86, NA, NA, 44.48, NA, NA, 44.34, NA, NA, 43.03, NA, > NA, NA, 44.08, NA, NA, 41.39, NA, NA, 42.48, NA, NA, 44.13, NA, > NA, 43.39, NA, NA, 42.82, 42.18, NA, NA, 41.42, NA, NA, 41.25, > NA, NA, 42.31, NA, NA, 43.22, NA, NA, 40.52, NA, NA), lnth = c(NA, > NA, 1.151, NA, NA, 1.135, NA, NA, 1.109, NA, NA, 1.117, NA, NA, > 1.107, NA, NA, 1.196, 1.255, NA, NA, 1.229, NA, NA, 1.158, NA, > NA, 1.214, NA, NA, 1.152, NA, NA, 1.194, NA, NA, NA, NA, NA, > NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, > 1.2, NA, NA, 1.219, NA, NA, 1.115, NA, NA, 1.205, NA, NA, 1.238, > NA, NA, 1.244, NA, NA, NA, 1.096, NA, NA, 1.021, NA, NA, 1.055, > NA, NA, 1.058, NA, NA, 1.026, NA, NA, 1.115, 1.202, NA, NA, 1.161, > NA, NA, 1.168, NA, NA, 1.189, NA, NA, 1.204, NA, NA, 1.277, NA, > NA)), .Names = c("FIELD", "REP", "PEDIGREE", "yield", "lp", "lnth" > ), row.names = c(NA, -108L), class = "data.frame") > > > > > > > R version 3.2.1 (2015-06-18) > > Platform: i386-w64-mingw32/i386 (32-bit) > > Running under: Windows 7 x64 (build 7601) Service Pack 1 > > > > locale: > > [1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252 > > [3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C > > [5] LC_TIME=English_United States.1252 > > > > attached base packages: > > [1] stats graphics grDevices utils datasets methods base > > > > other attached packages: > > [1] agricolae_1.2-1 asreml_3.0 lattice_0.20-31 ggplot2_1.0.1 dplyr_0.4.2 plyr_1.8.3 > > > > loaded via a namespace (and not attached): > > [1] spdep_0.5-88 Rcpp_0.12.1 cluster_2.0.2 magrittr_1.5 splines_3.2.1 MASS_7.3-41 > > [7] munsell_0.4.2 colorspace_1.2-6 R6_2.0.1 stringr_1.0.0 tools_3.2.1 parallel_3.2.1 > > [13] grid_3.2.1 gtable_0.1.2 nlme_3.1-122 coda_0.17-1 DBI_0.3.1 deldir_0.1-9 > > [19] lazyeval_0.1.10 assertthat_0.1 digest_0.6.8 Matrix_1.2-1 reshape2_1.4.1 sp_1.2-1 > > [25] stringi_1.0-1 klaR_0.6-12 LearnBayes_2.15 scales_0.3.0 boot_1.3-17 combinat_0.0-8 > > [31] proto_0.3-10 > > Thanks. > Nilesh >Sarah Goslee http://www.numberwright.com
DIGHE, NILESH [AG/2362]
2016-Jan-05 17:39 UTC
[R] store results from loop into a dataframe
Sarah: Thanks for pointing out the errors in my function. Below are the errors I am getting after I run the corrected quote: Error in if (s) { : missing value where TRUE/FALSE needed In addition: Warning message: In qtukey(1 - alpha, ntr, DFerror) : NaNs produced You are right, I have no idea to handle these errors. Do you recommend any other approach to solve my problem? Thanks for your time. Nilesh -----Original Message----- From: Sarah Goslee [mailto:sarah.goslee at gmail.com] Sent: Tuesday, January 05, 2016 11:20 AM To: DIGHE, NILESH [AG/2362] Cc: r-help at r-project.org Subject: Re: [R] store results from loop into a dataframe Leaving aside the question of whether this is the best way to approach your problem (unlikely), there's a couple of errors in your code involving indexing. Once fixed, the code demonstrates some errors in your use of HSD.test that will be harder for you to deal with. Thanks for the complete reproducible example. fun2 <- function (x) { trait_names <- c("yield", "lp", "lnth") d = data.frame(yield = rep(0, 6), lp = rep(0, 6), lnth = rep(0, 6)) for (i in trait_names) { # your formula has all the trait names, not the selected one # mod <- aov(formula(paste(trait_names, "~ PEDIGREE + FIELD + PEDIGREE*FIELD + FIELD%in%REP")), data = x) mod <- aov(formula(paste(i, "~ PEDIGREE + FIELD + PEDIGREE*FIELD + FIELD%in%REP")), data = x) out <- HSD.test(mod, "PEDIGREE", group = TRUE, console = FALSE) # you're indexing by the trait name, instead of its position # d[, i] <- out$means[, 1] d[, which(trait_names == i)] <- out$means[, 1] } d } Sarah On Tue, Jan 5, 2016 at 11:48 AM, DIGHE, NILESH [AG/2362] <nilesh.dighe at monsanto.com> wrote:> Dear R users: > > I am trying to create a function that will loop over three dependent variables in my aov model, and then get the HSD.test for each variable. I like to store the results from each loop in a data frame. > > > > When I run my function (funx) on my data (dat), results from only yield gets populated in all three columns of the dataframe. I am not able to store the results for each variable in a dataframe. Any help will be highly appreciated. > > > > > > > > function (x) > > { > > trait_names <- c("yield", "lp", "lnth") > > d = data.frame(yield = rep(0, 6), lp = rep(0, 6), lnth = rep(0, > > 6)) > > for (i in trait_names) { > > mod <- aov(formula(paste(trait_names, "~ PEDIGREE + FIELD + > PEDIGREE*FIELD + FIELD%in%REP")), > > data = x) > > out <- HSD.test(mod, "PEDIGREE", group = TRUE, console = > FALSE) > > d[, i] <- out$means[, 1] > > } > > d > > } > > > structure(list(FIELD = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, > 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, > 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, > 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, > 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L), .Label = > c("FYLS", "HKI1", "KIS1", "LMLS", "SELS", "SGL1"), class = "factor"), > REP = structure(c(1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, > 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, > 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, > 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, > 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, > 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, > 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L), .Label = c("1", "2", "3"), > class = "factor"), PEDIGREE = structure(c(1L, 1L, 1L, 2L, 2L, 2L, 3L, > 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 1L, 1L, 1L, 2L, 2L, 2L, > 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 1L, 1L, 1L, 2L, 2L, > 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 1L, 1L, 1L, 2L, > 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 1L, 1L, 1L, > 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 1L, 1L, > 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L), > .Label = c("A", "B", "C", "D", "E", "F"), class = "factor"), yield = > c(1003L, 923L, 1268L, 1226L, 1059L, 1150L, 900L, 816L, 1072L, 1158L, > 1026L, 1299L, 1083L, 1038L, 1236L, 1287L, 1270L, 1612L, 1513L, 1676L, > 1504L, 1417L, 1932L, 1644L, 1293L, 1542L, 1452L, 1180L, 1248L, 1764L, > 1326L, 1877L, 1788L, 1606L, 1809L, 1791L, 2294L, 2315L, 2320L, 2083L, > 1895L, 2284L, 2000L, 2380L, 1952L, 2414L, 2354L, 2095L, 2227L, 2093L, > 2019L, 2505L, 2410L, 2287L, 2507L, 2507L, 2349L, 2162L, 2108L, 2319L, > 2028L, 1947L, 2352L, 2698L, 2369L, 1798L, 2422L, 2509L, 2234L, 2451L, > 2139L, 1957L, 799L, 787L, 701L, 781L, 808L, 582L, 770L, 752L, 801L, > 865L, 608L, 620L, 677L, 775L, 722L, 1030L, 606L, 729L, 1638L, 1408L, > 1045L, 1685L, 1109L, 1210L, 1419L, 1048L, 1129L, 1549L, 1325L, 1315L, > 1838L, 1066L, 1295L, 1499L, 1472L, 1139L), lp = c(NA, NA, 46.31, NA, > NA, 43.8, NA, NA, 43.91, NA, NA, 44.47, NA, NA, 45.16, NA, NA, 43.57, > 40.65, NA, NA, 40.04, NA, NA, 41.33, NA, NA, 40.75, NA, NA, 42.04, NA, > NA, 40.35, NA, NA, 43.682, NA, NA, 41.712, NA, NA, 42.566, NA, NA, > 43.228, NA, NA, 43.63, NA, NA, 42.058, NA, NA, NA, 45.19, NA, NA, > 41.91, NA, NA, 43.86, NA, NA, 44.48, NA, NA, 44.34, NA, NA, 43.03, NA, > NA, NA, 44.08, NA, NA, 41.39, NA, NA, 42.48, NA, NA, 44.13, NA, NA, > 43.39, NA, NA, 42.82, 42.18, NA, NA, 41.42, NA, NA, 41.25, NA, NA, > 42.31, NA, NA, 43.22, NA, NA, 40.52, NA, NA), lnth = c(NA, NA, 1.151, > NA, NA, 1.135, NA, NA, 1.109, NA, NA, 1.117, NA, NA, 1.107, NA, NA, > 1.196, 1.255, NA, NA, 1.229, NA, NA, 1.158, NA, NA, 1.214, NA, NA, > 1.152, NA, NA, 1.194, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, > NA, NA, NA, NA, NA, NA, NA, NA, NA, 1.2, NA, NA, 1.219, NA, NA, 1.115, > NA, NA, 1.205, NA, NA, 1.238, NA, NA, 1.244, NA, NA, NA, 1.096, NA, > NA, 1.021, NA, NA, 1.055, NA, NA, 1.058, NA, NA, 1.026, NA, NA, 1.115, > 1.202, NA, NA, 1.161, NA, NA, 1.168, NA, NA, 1.189, NA, NA, 1.204, NA, > NA, 1.277, NA, NA)), .Names = c("FIELD", "REP", "PEDIGREE", "yield", > "lp", "lnth" > ), row.names = c(NA, -108L), class = "data.frame") > > > > > > > R version 3.2.1 (2015-06-18) > > Platform: i386-w64-mingw32/i386 (32-bit) > > Running under: Windows 7 x64 (build 7601) Service Pack 1 > > > > locale: > > [1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United > States.1252 > > [3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C > > [5] LC_TIME=English_United States.1252 > > > > attached base packages: > > [1] stats graphics grDevices utils datasets methods base > > > > other attached packages: > > [1] agricolae_1.2-1 asreml_3.0 lattice_0.20-31 ggplot2_1.0.1 dplyr_0.4.2 plyr_1.8.3 > > > > loaded via a namespace (and not attached): > > [1] spdep_0.5-88 Rcpp_0.12.1 cluster_2.0.2 magrittr_1.5 splines_3.2.1 MASS_7.3-41 > > [7] munsell_0.4.2 colorspace_1.2-6 R6_2.0.1 stringr_1.0.0 tools_3.2.1 parallel_3.2.1 > > [13] grid_3.2.1 gtable_0.1.2 nlme_3.1-122 coda_0.17-1 DBI_0.3.1 deldir_0.1-9 > > [19] lazyeval_0.1.10 assertthat_0.1 digest_0.6.8 Matrix_1.2-1 reshape2_1.4.1 sp_1.2-1 > > [25] stringi_1.0-1 klaR_0.6-12 LearnBayes_2.15 scales_0.3.0 boot_1.3-17 combinat_0.0-8 > > [31] proto_0.3-10 > > Thanks. > Nilesh >Sarah Goslee http://www.numberwright.com This e-mail message may contain privileged and/or confidential information, and is intended to be received only by persons entitled to receive such information. If you have received this e-mail in error, please notify the sender immediately. Please delete it and all attachments from any servers, hard drives or any other media. Other use of this e-mail by you is strictly prohibited. All e-mails and attachments sent and received are subject to monitoring, reading and archival by Monsanto, including its subsidiaries. The recipient of this e-mail is solely responsible for checking for the presence of "Viruses" or other "Malware". Monsanto, along with its subsidiaries, accepts no liability for any damage caused by any such code transmitted by or accompanying this e-mail or any attachment. The information contained in this email may be subject to the export control laws and regulations of the United States, potentially including but not limited to the Export Administration Regulations (EAR) and sanctions regulations issued by the U.S. Department of Treasury, Office of Foreign Asset Controls (OFAC). As a recipient of this information you are obligated to comply with all applicable U.S. export laws and regulations.