Hi everyone, I have a question with reference to "glm.cluster" from the package "miceadds" and hope that someone can help me. I am trying to calculate cluster-robust standard errors for a glm-model with multiply imputed datasets. Everything works just fine with glm.cluster but in the end I just get an output with estimates, standard errors and confidence intervals. But I need to report the significance level and I cannot figure out how to obtain this. Here is the code I ran: mod <- lapply(impulist, FUN=function(imp1){ glm.cluster(data=imp1, formula=AV ~ p123 + ISEI, family=binomial("logit"), cluster=imp1$ID_s) }) # extract parameters and covariance matrix betas <- lapply( mod , FUN = function(rr){ coef(rr) } ) vars <- lapply( mod , FUN = function(rr){ vcov(rr) } ) # conduct statistical inference summary( mitools::MIcombine(betas,vars) ) And that's what the output looks like: Multiple imputation results: MIcombine.default(betas, vars) results se (lower upper) missInfo (Intercept) -2.785309e+00 1.344773e-01 -3.053180e+00 -2.5174383210 25 % P123 8.273687e-05 2.834233e-05 1.797328e-05 0.0001475005 74 % ISEI 3.788065e-02 2.347762e-03 3.270191e-02 0.0430593934 67 % Thanks for your help! Best, Jen --- Jennifer Lorenz, M.A. Georg-August-Universit?t G?ttingen Sozialwissenschaftliche Fakult?t Institut f?r Erziehungswissenschaft Lehrstuhl Schulp?dagogik / Empirische Schulforschung e-mail: jlorenz at uni-goettingen.de<mailto:jlorenz at uni-goettingen.de> phone: 0551-39-21411 adress: Waldweg 26, 37073 G?ttingen room: 8.106 [[alternative HTML version deleted]]