Hi R-users, I am having problems while implementing the following model: 1. I have numerical regressors (GDP, HPA and FX observed quarterly) and need to predict the numerical variable Y. 2. I have to run *weighted Ridge Regression* where the weights of the squared residuals are decreasing at 5% with every quarter into the past. 3. Before estimating beta, I need select the *optimal Ridge parameter* (lambda) wrt the GCV criterion: a> For any lambda, divide the data into say, blocks B1, B2, B3, B4 and B5 of size k = 20% of data size. For each i, remove B_i, estimate the beta vector over the remaining data set and find the unweighted SSE (or any other deviation metric ) using this beta vector on the block B_i. Iterate over all five B_i''s ( i =1,2,3,4) and get the average of the 4 sse values. b> Allow lambda to vary between 0 to 1 in steps of size 0.01 and choose that lambda which minimizes the average sse computed in step a> 4. With this choice of lambda, my final beta estimate would be [X'W'WX + lambda * Identity Matrix]^(-1) * X'W'WY. 5. Here W'W is a diagonal matrix whose diagonals are decreasing from the last entry upwards at 5% decay rate and trace(W'W) = 1 (i.e. sum of weights = 1) I know lm.ridge() can do Ridge Regression, but I dont know how to write the code with these weights, GCV criterion etc. Can you please help me with this? I have attached the exact data in .txt format (should be readable with read.table() ).Please let me know in case I need to provide any more clarifications. Thanks, Preetam -------------- next part -------------- T GDP Rate HPA FX Y 1 0.806660537 2.177803167 1.14980573 2.733594304 2 0.997724655 1.585686087 0.814496976 3.193948056 3 0.99032353 0.569843997 0.464488882 3.065751781 4 0.606121306 3.037648988 0.565322084 4.537399052 5 0.858131141 4.816423605 1.924534222 7.871730873 6 0.052909178 2.048591352 1.470221953 2.580646078 7 0.081400487 1.152495559 1.128828557 7.200336313 8 0.840972911 3.848225962 1.004272646 1.211124673 9 0.965868218 1.039679934 0.231408747 7.566968 10 0.952626722 4.455565591 0.483541015 9.412639513 11 0.067691757 0.038417569 0.69744243 8.055369029 12 0.985658841 1.143481763 1.65850909 6.962599601 13 0.177186946 3.762691635 0.44379572 9.904367023 14 0.490066697 0.655629739 1.281478696 1.796422139 15 0.223740666 1.393201062 1.235291827 5.237943945 16 0.782873809 1.485727273 0.224511215 6.399036418 17 0.947492758 0.318485005 1.158911495 8.183470692 18 0.49692711 2.169601457 1.777618832 8.830805294 19 0.956704273 1.546827505 0.241838792 7.554654431 20 0.404624372 3.041530693 1.66039172 6.709330773 21 0.98557461 2.45656369 1.695179666 8.638707974 22 0.494102398 4.527230971 0.993352283 7.958872374 23 0.893182943 3.429112971 0.675541115 5.665249801 24 0.669680459 0.459919029 1.011872328 8.883120607 25 0.017296599 2.184045646 1.575891106 2.585709635