Hi Sarah, Thanks for your prompt responding. The methodology in the publication is very similar to what I plan to do. Yes, could you be willing to share the code if you don't mind? Thanks a lot again, Steve On Wed, Sep 9, 2015 at 9:11 AM, Sarah Goslee <sarah.goslee at gmail.com> wrote:> You can use gstat, as in: > > https://www.researchgate.net/publication/43279659_Behavior_of_Vegetation_Sampling_Methods_in_the_Presence_of_Spatial_Autocorrelation > > If you need more detail, I can dig up the code. > > Sarah > > On Wed, Sep 9, 2015 at 8:49 AM, SH <emptican at gmail.com> wrote: > > Hi R-users, > > > > I hope this is not redundant questions. I tried to search similar > threads > > relevant to my questions but could not find. Any input would be greatly > > appreciated. > > > > I want to generate grid with binary values (1 or 0) in n1 by n2 (e.g., > 100 > > by 100 or 200 by 500, etc.) given proportions of 1 and 0 values (e.g., 1, > > 5, or 10% of 1 from 100 by 100 grid). For clustered distributed grid, I > > hope to be able to define cluster size if possible. Is there a simple > way > > to generate random/clustered grids with 1 and 0 values with a > > pre-defined proportion? > > > > So far, the function "EVariogram" in the "CompRandFld" package generates > > clustered grid with 1 and 0. Especially, the example #4 in the > > "EVariogram" function description is a kind of what I want. Below is the > > slightly modified code from the original one. However, the code below > > can't control proportion of 1 and 0 values and complicated or I have no > > idea how to do it. I believe there may be easies ways to > > generate random/clustered grids with proportional 1 and 0 values. > > > > Thank you very much in advance, > > > > Steve > > > > > > library(CompRandFld) > > library(RandomFields) > > > > x0 <- seq(1, 50, length.out=50) > > y0 <- seq(1, 60, length.out=60) > > d <- expand.grid(x=x0, y=y0) > > dim(d) > > head(d) > > x <- d$x > > y <- d$y > > # Set the model's parameters: > > corrmodel <- 'exponential' > > mean <- 0 > > sill <- 1 > > nugget <- 0 > > scale <- 3 > > set.seed(1221) > > # Simulation of the Binary-Gaussian random field: > > data <- RFsim(x, y, corrmodel="exponential", model="BinaryGauss", > > param=list(mean=mean,sill=sill,scale=scale,nugget=nugget), > > threshold=0)$data > > # Empirical lorelogram estimation: > > fit <- EVariogram(data, x, y, numbins=20, maxdist=7, type="lorelogram") > > # Results: > > plot(fit$centers, fit$variograms, xlab='Distance', ylab="Lorelogram", > > ylim=c(min(fit$variograms), max(fit$variograms)), > > xlim=c(0, max(fit$centers)), pch=20, main="Spatial Lorelogram") > > # Plotting > > plot(d, type='n') > > text(d, label=data) > > > > > -- > Sarah Goslee > http://www.functionaldiversity.org >[[alternative HTML version deleted]]
######################################################## ### simulate landscapes with spatial autocorrelation ### ### Sarah Goslee 2015-09-09 ### ### Goslee 2006 PLANT ECOLOGY 187(2):203-212 ### ######################################################## library(gstat) ## parameters abun <- 0.2 dim1 <- 20 dim2 <- 50 ## setup xy <- expand.grid(seq_len(dim1), seq_len(dim2)) names(xy) <- c("x","y") ## three sample simulations # no spatial autocorrelation g.dummy <- gstat(formula = z~x+y, locations = ~x+y, dummy = TRUE, beta = 0, model = vgm(1,"Nug", 0), nmax = 50) sim <- predict(g.dummy, newdata = xy, nsim = 1) random.landscape.000 <- predict(g.dummy, newdata = xy, nsim = 1) random.landscape.000[,3] <- ifelse(random.landscape.000[,3] > quantile(random.landscape.000[,3], abun), 0, 1) # little spatial autocorrelation g.dummy <- gstat(formula = z~x+y, locations = ~x+y, dummy = TRUE, beta = 0, model = vgm(1,"Exp", 5), nmax = 50) random.landscape.005 <- predict(g.dummy, newdata = xy, nsim = 1) random.landscape.005[,3] <- ifelse(random.landscape.005[,3] > quantile(random.landscape.005[,3], abun), 0, 1) # much spatial autocorrelation g.dummy <- gstat(formula = z~x+y, locations = ~x+y, dummy = TRUE, beta = 0, model = vgm(1,"Exp", 250), nmax = 50) sim <- predict(g.dummy, newdata = xy, nsim = 1) random.landscape.250 <- predict(g.dummy, newdata = xy, nsim = 1) random.landscape.250[,3] <- ifelse(random.landscape.250[,3] > quantile(random.landscape.250[,3], abun), 0, 1) # plot the simulated landscapes par(mfrow=c(1,3)) image(random.landscape.000, main="Null", xaxt="n", yaxt="n", bty="n", xlim=c(0,dim1), ylim=c(0, dim2), col=c("lightgray", "darkgray")) image(random.landscape.005, main="5", xaxt="n", yaxt="n", bty="n", xlim=c(0,dim1), ylim=c(0, dim2), col=c("lightgray", "blue")) image(random.landscape.250, main="250", sub=paste("abun =", abun), xaxt="n", yaxt="n", bty="n", xlim=c(0,dim1), ylim=c(0, dim2), col=c("lightgray", "darkblue")) ######################################################## ### end ### ######################################################## On Wed, Sep 9, 2015 at 9:27 AM, SH <emptican at gmail.com> wrote:> Hi Sarah, > > Thanks for your prompt responding. The methodology in the publication is > very similar to what I plan to do. Yes, could you be willing to share the > code if you don't mind? > > Thanks a lot again, > > Steve > > On Wed, Sep 9, 2015 at 9:11 AM, Sarah Goslee <sarah.goslee at gmail.com> wrote: >> >> You can use gstat, as in: >> >> https://www.researchgate.net/publication/43279659_Behavior_of_Vegetation_Sampling_Methods_in_the_Presence_of_Spatial_Autocorrelation >> >> If you need more detail, I can dig up the code. >> >> Sarah >> >> On Wed, Sep 9, 2015 at 8:49 AM, SH <emptican at gmail.com> wrote: >> > Hi R-users, >> > >> > I hope this is not redundant questions. I tried to search similar >> > threads >> > relevant to my questions but could not find. Any input would be greatly >> > appreciated. >> > >> > I want to generate grid with binary values (1 or 0) in n1 by n2 (e.g., >> > 100 >> > by 100 or 200 by 500, etc.) given proportions of 1 and 0 values (e.g., >> > 1, >> > 5, or 10% of 1 from 100 by 100 grid). For clustered distributed grid, I >> > hope to be able to define cluster size if possible. Is there a simple >> > way >> > to generate random/clustered grids with 1 and 0 values with a >> > pre-defined proportion? >> > >> > So far, the function "EVariogram" in the "CompRandFld" package generates >> > clustered grid with 1 and 0. Especially, the example #4 in the >> > "EVariogram" function description is a kind of what I want. Below is the >> > slightly modified code from the original one. However, the code below >> > can't control proportion of 1 and 0 values and complicated or I have no >> > idea how to do it. I believe there may be easies ways to >> > generate random/clustered grids with proportional 1 and 0 values. >> > >> > Thank you very much in advance, >> > >> > Steve >> > >> > >> > library(CompRandFld) >> > library(RandomFields) >> > >> > x0 <- seq(1, 50, length.out=50) >> > y0 <- seq(1, 60, length.out=60) >> > d <- expand.grid(x=x0, y=y0) >> > dim(d) >> > head(d) >> > x <- d$x >> > y <- d$y >> > # Set the model's parameters: >> > corrmodel <- 'exponential' >> > mean <- 0 >> > sill <- 1 >> > nugget <- 0 >> > scale <- 3 >> > set.seed(1221) >> > # Simulation of the Binary-Gaussian random field: >> > data <- RFsim(x, y, corrmodel="exponential", model="BinaryGauss", >> > param=list(mean=mean,sill=sill,scale=scale,nugget=nugget), >> > threshold=0)$data >> > # Empirical lorelogram estimation: >> > fit <- EVariogram(data, x, y, numbins=20, maxdist=7, type="lorelogram") >> > # Results: >> > plot(fit$centers, fit$variograms, xlab='Distance', ylab="Lorelogram", >> > ylim=c(min(fit$variograms), max(fit$variograms)), >> > xlim=c(0, max(fit$centers)), pch=20, main="Spatial Lorelogram") >> > # Plotting >> > plot(d, type='n') >> > text(d, label=data) >> > >> >> >> -- >> Sarah Goslee >> http://www.functionaldiversity.org > >-- Sarah Goslee http://www.stringpage.com http://www.sarahgoslee.com http://www.functionaldiversity.org
Thank you so much! I will try it! On Wed, Sep 9, 2015 at 3:27 PM, Sarah Goslee <sarah.goslee at gmail.com> wrote:> ######################################################## > ### simulate landscapes with spatial autocorrelation ### > ### Sarah Goslee 2015-09-09 ### > ### Goslee 2006 PLANT ECOLOGY 187(2):203-212 ### > ######################################################## > > library(gstat) > > > ## parameters > abun <- 0.2 > dim1 <- 20 > dim2 <- 50 > > > ## setup > xy <- expand.grid(seq_len(dim1), seq_len(dim2)) > names(xy) <- c("x","y") > > > ## three sample simulations > > # no spatial autocorrelation > g.dummy <- gstat(formula = z~x+y, locations = ~x+y, dummy = TRUE, beta > = 0, model = vgm(1,"Nug", 0), nmax = 50) > sim <- predict(g.dummy, newdata = xy, nsim = 1) > random.landscape.000 <- predict(g.dummy, newdata = xy, nsim = 1) > random.landscape.000[,3] <- ifelse(random.landscape.000[,3] > > quantile(random.landscape.000[,3], abun), 0, 1) > > # little spatial autocorrelation > g.dummy <- gstat(formula = z~x+y, locations = ~x+y, dummy = TRUE, beta > = 0, model = vgm(1,"Exp", 5), nmax = 50) > random.landscape.005 <- predict(g.dummy, newdata = xy, nsim = 1) > random.landscape.005[,3] <- ifelse(random.landscape.005[,3] > > quantile(random.landscape.005[,3], abun), 0, 1) > > # much spatial autocorrelation > g.dummy <- gstat(formula = z~x+y, locations = ~x+y, dummy = TRUE, beta > = 0, model = vgm(1,"Exp", 250), nmax = 50) > sim <- predict(g.dummy, newdata = xy, nsim = 1) > random.landscape.250 <- predict(g.dummy, newdata = xy, nsim = 1) > random.landscape.250[,3] <- ifelse(random.landscape.250[,3] > > quantile(random.landscape.250[,3], abun), 0, 1) > > > # plot the simulated landscapes > par(mfrow=c(1,3)) > image(random.landscape.000, main="Null", xaxt="n", yaxt="n", bty="n", > xlim=c(0,dim1), ylim=c(0, dim2), col=c("lightgray", "darkgray")) > image(random.landscape.005, main="5", xaxt="n", yaxt="n", bty="n", > xlim=c(0,dim1), ylim=c(0, dim2), col=c("lightgray", "blue")) > image(random.landscape.250, main="250", sub=paste("abun =", abun), > xaxt="n", yaxt="n", bty="n", xlim=c(0,dim1), ylim=c(0, dim2), > col=c("lightgray", "darkblue")) > > ######################################################## > ### end ### > ######################################################## > > On Wed, Sep 9, 2015 at 9:27 AM, SH <emptican at gmail.com> wrote: > > Hi Sarah, > > > > Thanks for your prompt responding. The methodology in the publication is > > very similar to what I plan to do. Yes, could you be willing to share > the > > code if you don't mind? > > > > Thanks a lot again, > > > > Steve > > > > On Wed, Sep 9, 2015 at 9:11 AM, Sarah Goslee <sarah.goslee at gmail.com> > wrote: > >> > >> You can use gstat, as in: > >> > >> > https://www.researchgate.net/publication/43279659_Behavior_of_Vegetation_Sampling_Methods_in_the_Presence_of_Spatial_Autocorrelation > >> > >> If you need more detail, I can dig up the code. > >> > >> Sarah > >> > >> On Wed, Sep 9, 2015 at 8:49 AM, SH <emptican at gmail.com> wrote: > >> > Hi R-users, > >> > > >> > I hope this is not redundant questions. I tried to search similar > >> > threads > >> > relevant to my questions but could not find. Any input would be > greatly > >> > appreciated. > >> > > >> > I want to generate grid with binary values (1 or 0) in n1 by n2 (e.g., > >> > 100 > >> > by 100 or 200 by 500, etc.) given proportions of 1 and 0 values (e.g., > >> > 1, > >> > 5, or 10% of 1 from 100 by 100 grid). For clustered distributed > grid, I > >> > hope to be able to define cluster size if possible. Is there a simple > >> > way > >> > to generate random/clustered grids with 1 and 0 values with a > >> > pre-defined proportion? > >> > > >> > So far, the function "EVariogram" in the "CompRandFld" package > generates > >> > clustered grid with 1 and 0. Especially, the example #4 in the > >> > "EVariogram" function description is a kind of what I want. Below is > the > >> > slightly modified code from the original one. However, the code below > >> > can't control proportion of 1 and 0 values and complicated or I have > no > >> > idea how to do it. I believe there may be easies ways to > >> > generate random/clustered grids with proportional 1 and 0 values. > >> > > >> > Thank you very much in advance, > >> > > >> > Steve > >> > > >> > > >> > library(CompRandFld) > >> > library(RandomFields) > >> > > >> > x0 <- seq(1, 50, length.out=50) > >> > y0 <- seq(1, 60, length.out=60) > >> > d <- expand.grid(x=x0, y=y0) > >> > dim(d) > >> > head(d) > >> > x <- d$x > >> > y <- d$y > >> > # Set the model's parameters: > >> > corrmodel <- 'exponential' > >> > mean <- 0 > >> > sill <- 1 > >> > nugget <- 0 > >> > scale <- 3 > >> > set.seed(1221) > >> > # Simulation of the Binary-Gaussian random field: > >> > data <- RFsim(x, y, corrmodel="exponential", model="BinaryGauss", > >> > > param=list(mean=mean,sill=sill,scale=scale,nugget=nugget), > >> > threshold=0)$data > >> > # Empirical lorelogram estimation: > >> > fit <- EVariogram(data, x, y, numbins=20, maxdist=7, > type="lorelogram") > >> > # Results: > >> > plot(fit$centers, fit$variograms, xlab='Distance', ylab="Lorelogram", > >> > ylim=c(min(fit$variograms), max(fit$variograms)), > >> > xlim=c(0, max(fit$centers)), pch=20, main="Spatial Lorelogram") > >> > # Plotting > >> > plot(d, type='n') > >> > text(d, label=data) > >> > > >> > >> > >> -- > >> Sarah Goslee > >> http://www.functionaldiversity.org > > > > > > > > -- > Sarah Goslee > http://www.stringpage.com > http://www.sarahgoslee.com > http://www.functionaldiversity.org >[[alternative HTML version deleted]]