I rather suspect the problem is primarily statistical, not R related. If at
all possible, try to get some local statistical advice. Most probably, you
have empty cells in some of the dpi.f by diss.f table.
Also, using a Gaussian family and the cells/mg response may be
inappropriate: 1 cell in 5 mg is different than 100 cells in 500 mg. This
obviously depends on your data, which is why local help might be important.
Cheers,
Bert
On Wednesday, August 5, 2015, a_wohl <sithlord1 at gmx.net> wrote:
> Hi :-) i am really looking forward to get some help... Since I am a
> R-beginner I need it.
>
> I have a model consisting of the factors: dpi, infection, dissection day
> and
> plate. My reskponse variable is cells/mg. dpi is nested in dissection day.
> They are all fixed variables.
> I produced this nested model (best AIC index)
> glm.3<-cm.2~infect.f+dpi.f+dpi.f/diss.f, na.action=na.omit)
>
> summary(glm.3)
> Call:
> glm(formula = cm.2 ~ infect.f + dpi.f + dpi.f %in% diss.f, family >
gaussian,
> na.action = na.omit)
>
> Deviance Residuals:
> Min 1Q Median 3Q Max
> -2.7746 -0.3625 0.0080 0.3628 1.9031
>
> Coefficients: (18 not defined because of singularities)
> Estimate Std. Error t value Pr(>|t|)
> (Intercept) 7.01887 0.15278 45.941 < 2e-16 ***
> infect.finf 0.05544 0.08107 0.684 0.4946
> infect.fsha -0.15563 0.08831 -1.762 0.0791 .
> dpi.f2 0.08924 0.20459 0.436 0.6630
> dpi.f4 -0.40167 0.21082 -1.905 0.0577 .
> dpi.f8 0.01961 0.20789 0.094 0.9249
> dpi.f16 0.82210 0.20469 4.016 7.54e-05 ***
> dpi.f32 0.99639 0.21435 4.648 5.09e-06 ***
> dpi.f1:diss.f2 0.13276 0.21077 0.630 0.5293
> dpi.f2:diss.f2 NA NA NA NA
> dpi.f4:diss.f2 0.46749 0.20784 2.249 0.0253 *
> dpi.f8:diss.f2 -0.06555 0.20205 -0.324 0.7459
> dpi.f16:diss.f2 NA NA NA NA
> dpi.f32:diss.f2 NA NA NA NA
> dpi.f1:diss.f3 NA NA NA NA
> dpi.f2:diss.f3 -0.15794 0.20186 -0.782 0.4346
> dpi.f4:diss.f3 0.20921 0.21081 0.992 0.3218
> dpi.f8:diss.f3 NA NA NA NA
> dpi.f16:diss.f3 -0.03611 0.20178 -0.179 0.8581
> dpi.f32:diss.f3 NA NA NA NA
> dpi.f1:diss.f4 0.14040 0.20459 0.686 0.4931
> dpi.f2:diss.f4 -0.01701 0.21152 -0.080 0.9360
> dpi.f4:diss.f4 NA NA NA NA
> dpi.f8:diss.f4 NA NA NA NA
> dpi.f16:diss.f4 -0.19082 0.20168 -0.946 0.3449
> dpi.f32:diss.f4 NA NA NA NA
> dpi.f1:diss.f5 NA NA NA NA
> dpi.f2:diss.f5 NA NA NA NA
>
> ........and so forth.
> Since i decided for a nested modul, I wonder where the NAs are coming from?
> Since I want to perform a post hoc test, I was trysing the glht fuinction
> form the multcomp package.
> I always get this error
> Error in modelparm.default(model, ...) :
> dimensions of coefficients and covariance matrix don't match
>
> I think this is due to my NAs in the summary(glm.3).
> Can anyone help me, how I can perform a post hoc test (Bonferroni) on my
> data?
>
> thank you
> a_wohl
>
>
>
> --
> View this message in context:
> http://r.789695.n4.nabble.com/nested-model-and-post-hoc-tp4710784.html
> Sent from the R help mailing list archive at Nabble.com.
>
> ______________________________________________
> R-help at r-project.org <javascript:;> mailing list -- To UNSUBSCRIBE
and
> more, see
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
> http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
--
Bert Gunter
"Data is not information. Information is not knowledge. And knowledge is
certainly not wisdom."
-- Clifford Stoll
[[alternative HTML version deleted]]