Hello, I estimated a VECM in Eviews and R using urca package's ca.jo(), cajorl() and vec2var() functions. Specifications are 'no trend' in Eviews and 'none' in R (no theory, just testing, feel free to make changes). Results are different, ecm and cointegrating vectors are completely different. R code is: *johcoint=ca.jo(Ydata,type="trace",ecdet=c("none"),K=2,spec="transitory") summary(johcoint) vecm.r1=cajorls(johcoint,r=1) vecm.r1 vecm.l=vec2var(johcoint,r=1) ll=irf(vecm.l, impulse = "B",response = "A", boot = FALSE) plot(ll$irf[[1]])* Data: A B C D 1 8.646924 3.925155 2.297737 2.764267 2 8.643810 4.048215 2.140731 2.769231 3 8.634732 4.117114 2.063724 2.747604 4 8.603337 3.976002 1.939290 2.741640 5 8.604344 3.924697 1.928255 2.732419 6 8.628887 3.921517 1.878674 2.718437 7 8.653167 3.906076 1.943236 2.693620 8 8.661854 3.940468 2.107718 2.670370 9 8.609839 3.872782 2.003064 2.689212 10 8.614091 3.905839 1.973719 2.679186 11 8.613692 3.890797 1.939311 2.659350 12 8.651488 4.052423 1.961038 2.640751 13 8.654469 4.137534 2.130873 2.622611 14 8.693121 4.074753 2.108427 2.595760 15 8.699435 3.872412 2.091816 2.622049 16 8.808724 3.851373 2.345740 2.646252 17 8.814437 3.806048 2.057104 2.728953 18 8.836529 3.743046 1.825827 2.748266 19 8.826898 3.693897 1.823880 3.027604 20 8.809117 3.673126 2.020016 2.820051 21 8.654972 3.652903 1.523249 2.538225 22 8.515917 3.659592 1.617734 2.523293 23 8.589919 3.655822 1.827645 2.371598 24 8.595193 3.645937 1.825603 2.251557 25 8.615332 3.629201 1.661946 2.254364 26 8.671222 3.609464 1.733073 2.145093 27 8.611882 3.612110 1.794937 1.819291 28 8.688414 3.579205 1.505888 1.654666 29 8.690125 3.554958 1.426589 1.731257 30 8.725932 3.533288 1.522311 1.788969 31 8.743279 3.527591 1.601261 1.760313 32 8.694805 3.531611 1.634085 1.732271 33 8.687983 3.527327 1.601985 1.836593 34 8.716976 3.514645 1.589035 1.745653 35 8.775464 3.492427 1.471562 1.699377 36 8.808898 3.471036 1.460162 1.686131 37 8.842847 3.451130 1.579547 1.670513 38 8.871786 3.428002 1.597216 1.618989 39 8.907425 3.423887 1.626208 1.652055 40 8.924721 3.403657 1.578576 1.509779 41 8.941122 3.357645 1.521236 1.607082 42 9.009112 3.314089 1.506758 1.544039 43 9.029894 3.267795 1.483968 1.518783 44 9.055359 3.240397 1.517348 1.517085 45 9.040278 3.235410 1.590436 1.509334 46 8.993796 3.252374 1.651106 1.431041 47 8.967464 3.236265 1.672098 1.338936 48 8.952859 3.235916 1.662450 1.287055 49 9.121430 3.217599 1.711292 1.263948 50 9.147871 3.205194 1.676641 1.211038 Will anyone please help why this might happen? Perhaps I am estimating the models incorrectly? Thank you -- View this message in context: http://r.789695.n4.nabble.com/cointegration-and-VECM-urca-package-and-Eviews-tp4709708.html Sent from the R help mailing list archive at Nabble.com.