Hello,
I send a mail a few days ago but nobody was inspired with
my question!
I just want to know if some people would be interested in discussing
about free-sorting data analysis (psychological experiment like
classification task, ...)?
I made a very specific function to analyze those classification tasks.
And I would like to have comments about it.
Olivier Houix
On Tue, Jun 12, 2001 at 11:45:17AM +0200, Olivier.Houix at ircam.fr
wrote:> Date: Tue, 12 Jun 2001 11:45:17 +0200
> From: Olivier.Houix at ircam.fr
> To: r-help at stat.math.ethz.ch
> Subject: [R] cophenetic matrix
>
> Hello,
> I analyse some free-sorting data so I use hierarchical
> clustering.
> I want to compare my proximity matrix with the tree
> representation to evalute the fitting. (stress, cophenetic correlation
> (pearson''s correlation)...)
>
> "The cophenetic similarity of two objects a and b is defined as the
> similarity level at wich objects a and b become members of the same
> cluster during the course of clustering" Legendre, P and Legendre, L
Numeri
> Ecology, 1998.
>
> I''ve made a (tricky) function to compute this cophenetic matrix.
But now
> I need some help to evaluate my function with your data. Because for
> little matrix (as Legendre''s example), I found the same cophenetic
> correlation as Matlab do (direct calculation) but for bigger matrix
> (30x30) my results differ!!
>
> Maybe my function is wrong?
> To use my function you need to have the sm library.
>
> Thanks
> Olivier Houix
> --
> Olivier Houix <houix at ircam.fr> tel: 01 44 78 15 51
> Equipe Perception et Cognition Musicales http://www.ircam.fr/
> IRCAM 1 place Igor Stravinsky 75004 Paris
> ### cophenetic matrix that represents tree distance
> ### I use the function ask to interactively input data
> ### sorry for people that doesn''t like this
> ### the cophenetic matrix is saved with the name:
> ### filename.arbre
> ### source("cophmatrix.r")
> ###
> cophmatrix <- function(){
> library(mva)
> library(sm)
> nom <- ask(message="Name of the file")
> nbre <- ask(message="Number of sounds")
> quest <- ask(message="Matrix of dissimilarity (1) or nxm matrix
(2)")
> fichier <- read.table(nom)
> ## matrix nxn ou nxm
> ## proximity between objects: nxn or description of n objects with m
attributes
> if(quest == 1){
> dis1 <- as.dist(fichier)
> }
> else{
> methode <- ask(message="The distance measure to be used =
euclidean:1 maximum:2 manhattan:3 canberra:4 or binary:5")
> methodo <- c("euclidean", "maximum",
"manhattan", "canberra" ,"binary")
> dis1 <- dist(fichier , method = methodo[[methode]])
> }
> methode2 <- ask(message ="The agglomeration method to be used =
ward:1 single:2 complete:3 average:4 mcquitty:5 median:6 centroid:7")
> methodo2 <- c("ward", "single",
"complete", "average","mcquitty",
"median","centroid")
> hc <- hclust(dis1 , method = methodo2[[methode2]])
> merge <- hc$merge
> height <- hc$height
> nodal <- cbind(merge,height) ### layout of the nodes
> long <- length(height) + 1
> distarbre <- mat.or.vec(nbre,nbre)
>
> ## the method is very simple as the program hclust works.
> ## For clusters merging, I compute the distance between
> ## objects belonging to the differents clusters merged.
> ## If you look at hc$merge, you see that a negative value correspond
> ## to an object and a positive value to a node.
>
> for(i in 1:(long-1)){
> if(i == 1){
> if((nodal[i,1] < 0) && (nodal[i,2] < 0)){
> noeud <- list(c(abs(nodal[i,1]),abs(nodal[i,2])))
> distarbre[as.integer(abs(nodal[i,1])),as.integer(abs(nodal[i,2]))]
<- nodal[i,3]
> distarbre[as.integer(abs(nodal[i,2])),as.integer(abs(nodal[i,1]))]
<- nodal[i,3]
> }
> if(((nodal[i,1] < 0) && (nodal[i,2] > 0)) ||
(nodal[i,2] < 0) && (nodal[i,1] > 0)){
> if(nodal[i,1] > 0){
> noeud <-
list(c(unlist(noeud[[as.integer(abs(nodal[i,1]))]]),abs(nodal[i,2])))
>
> }
> else noeud <-
list(c(unlist(noeud[[as.integer(abs(nodal[i,2]))]]),abs(nodal[i,1])))
>
> }
> if((nodal[i,1] > 0) && (nodal[i,2] > 0)){
> noeud <-
list(c(unlist(noeud[[abs(nodal[i,1])]]),unlist(noeud[[as.integer(abs(nodal[i,2]))]])))
> }
>
> }
> else{
> if((nodal[i,1] < 0) && (nodal[i,2] < 0)){
> noeud <- c(noeud,list(c(abs(nodal[i,1]),abs(nodal[i,2]))))
> distarbre[as.integer(abs(nodal[i,1])),as.integer(abs(nodal[i,2]))]
<- nodal[i,3]
> distarbre[as.integer(abs(nodal[i,2])),as.integer(abs(nodal[i,1]))]
<- nodal[i,3]
> }
> if(((nodal[i,1] < 0) && (nodal[i,2] > 0)) ||
(nodal[i,2] < 0) && (nodal[i,1] > 0)){
> if(nodal[i,1] > 0){
> for(l in 1:length(noeud[[as.integer(abs(nodal[i,1]))]])){
> print(l)
>
distarbre[noeud[[as.integer(abs(nodal[i,1]))]][l],abs(nodal[i,2])] <-
nodal[i,3]
>
distarbre[abs(nodal[i,2]),noeud[[as.integer(abs(nodal[i,1]))]][l]] <-
nodal[i,3]
> }
> noeud <-
c(noeud,list(c((noeud[[as.integer(abs(nodal[i,1]))]]),abs(nodal[i,2]))))
> }
> else{
> print(length(noeud[[as.integer(abs(nodal[i,2]))]]))
> for(m in 1:length(noeud[[as.integer(abs(nodal[i,2]))]])){
> print(m)
>
distarbre[noeud[[as.integer(abs(nodal[i,2]))]][m],abs(nodal[i,1])] <-
nodal[i,3]
>
distarbre[abs(nodal[i,1]),noeud[[as.integer(abs(nodal[i,2]))]][m]] <-
nodal[i,3]
> }
> noeud <-
c(noeud,list(c((noeud[[as.integer(abs(nodal[i,2]))]]),abs(nodal[i,1]))))
> }
> }
> if((nodal[i,1] > 0) && (nodal[i,2] > 0)){
> for(n in 1:length(noeud[[as.integer(abs(nodal[i,1]))]])){
> for(o in 1:length(noeud[[as.integer(abs(nodal[i,2]))]])){
>
distarbre[noeud[[as.integer(abs(nodal[i,2]))]][o],noeud[[as.integer(abs(nodal[i,1]))]][n]]
<- nodal[i,3]
>
distarbre[noeud[[as.integer(abs(nodal[i,1]))]][n],noeud[[as.integer(abs(nodal[i,2]))]][o]]
<- nodal[i,3]
> }
> }
> noeud <-
c(noeud,list(c((noeud[[as.integer(abs(nodal[i,1]))]]),(noeud[[as.integer(abs(nodal[i,2]))]]))))
> }
> }
> }
> ##print(diag(distarbre))
> ##print(distarbre)
> write.table(distarbre,paste(nom,".arbre",sep=""),
quote = FALSE,eol = "\n",row.names = FALSE,col.names=FALSE)
> }
>
>
>
>
>
>
--
Olivier Houix <houix at ircam.fr> tel: 01 44 78 15 51
Equipe Perception et Cognition Musicales http://www.ircam.fr/pcm/houix/
IRCAM 1 place Igor Stravinsky 75004 Paris
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
r-help mailing list -- Read http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html
Send "info", "help", or "[un]subscribe"
(in the "body", not the subject !) To: r-help-request at
stat.math.ethz.ch
_._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._