--Apple-Mail-7--233789088 Content-Transfer-Encoding: 7bit Content-Type: text/plain; charset=US-ASCII; format=flowed Hi Kurt I currently have on my Mac gcc 2.95.2, 3.1, and 3.3 and the corresponding g77 versions as well. R builds fine with the 2.95.2 combo, it also builds fine with gcc 2.95.2 and g77 3.1. But using gcc 3.1 or gcc 3.3 gives the familiar problem that I mentioned before (although the 3.1 combination does build scilab and octave fine). checking for dummy main to link with Fortran 77 libraries... unknown configure: error: linking to Fortran libraries from C fails I include the config.log for the build with gcc 2.95.2 and g77 3.1 (which works) and for the one with gcc 3.1 and g77 3.1, which fails. Is that configure test, the one that fails, really needed ? By the way, gcc 3.1 with f2c also works -- but that fails to build some packages such as splancs and subselect. More by the way, gcc 3.1 and 2.95.2 come with OS X, g77 3.1 and 2.95.2 come from fink, gcc 3.3 and g77 3.3 come from Apple's CVS. f2c also from fink. --- Jan --Apple-Mail-7--233789088 Content-Disposition: attachment; filename=configs.tgz Content-Transfer-Encoding: base64 Content-Type: application/x-gzip; x-unix-mode=0644; name="configs.tgz" H4sIAAAAAAAAA+w9a3fbtpL9evUrcJKetd1EFN8P56b3OLaT+Nw8fGy3t9mbrkORkMSaIrl82HG7 3d++MyAlESAo27GdbdLq1LUFDAYzg8FgBhggQZpMoqkSp1Nl4kfxN/fxUTVVtU3zGxU+jm2x36pu Nr9tzTG1b1THMhzLMm1Th3LNMCz4fS/UCJ+qKP0cugxpTGl10QsHYJPJ5yDo835OZlFBJlFMSZAm pR8lBfGTSzKnReFPaUGyPA2rgIZkfAkQ8wwg84JczOD3IK+SJEqm2BJ0qMrpY1KmxI9CEtJxNZ1i XTRZVZO5fwYofTKPQJpnVBkMDkpy4RckyKlf1p0cteA1xVbUx9hbMEO4wZQmNF9AvnjzA9mpyhTh ia5YhkLIQXKeBn4ZpQlSO/eTkMRRQlnjASHftpAPhxdRORuWQTysC5+OiotRHI1HULRbT4titgQ7 60CdtYFo4o9jOjwaFjOoHAwePoTC5kMePsTvh7FfTtJ8rjTfufrBLC3KxJ9T8pQEiCpMA9tVJrn/ 67xMFGBmULHq4RwgDtMLmpPXfhAlZVrMFlU5VNmKtvhawNc9P7+IkkXJ+bKE/JPmCY3JjzCcKC1o tk2e5xE5phkhNtGNbd3cNkxyuHdCdJimT0iepuX2x6Qawc/QME1FV9LxL/+rj472X+3vHO+fHh7u ksFgVBX5aBwlo6bPDPrMkN4sGLTLfyL4eUqq5CxJL5JBXennMNTcZwWxxMyAhmdyABimc/pxNKVl cVlEySRtAaCQWZHYBYhyRs5qkZzXItke/G2NrAa3l9VgMGgQL5UyJKAgpMpwHuk49wKYh2leKIP2 N+KD+mYz4C7w4/iS+OdguVFnlMHhAoiUlxndJlkWOKalkk2mMTA++G1rBQa4gjI6B0iVaFAczf0c Z/88zVt4t4lmGTAVVaiZ+uPLkgJFe3TiV3G5oosUtNwmpkNKvzgrHhNNtUk5g5kdwpc2/YNXqR8C dpjKU+xZcWGSsxGYADVpDt0pmjdYjioO+RyqcSKv1Yu0iOk5yLMDUKtdhCNLZRgGhzsnL7cJTm0A bX0rVl+V6wAtSGl/FatjsFCxCFQXtkHbfQjAP2nakd0G2MmyOKrtXjGCwZ3m/nwO5ne0My7SSSnv LPbnQ1uxx5q8GlX49NxQVE1RbTnILJvIK15W0xkt5HXPgD5wN7oVZWzIW2TncwNNbn/NaG/n6F8H b3oAcPT7AOZZEPSIJ0pC31b0IcyhYVp8HDW/h2M5fElP6E+sr8baDX0YFToMmQ0ZBlWe06RnKMCy RGHkJ/LaNIySeSbWdZTgpqQM+FVquU7tpmBeYIqXRWelataqpb3a1izX2ibBjAZnuNqj9fLJs+O9 IfoKoI9gPAj4FCXYqXYr2/C2SU4LsB/LCTVq4Mgw4EAttdXBxYyWM1j6xlUUh4Qm51GeJnNghoAb U/gJ5Zp6xqqXS1q06xzVlaBFBwXNWEG+/e31zj/3f+ea6G4/OlsVxHCR5uxvP2BjMtQUk2vgaCtk 4A/BSjXl60W5LhE2Lg8H7eorbJO0SkKu1uslDnAhzyJ1rrqeOlddR90MTD7NOXhtHX2u3kcf0obr NQ/trMNlaS1ctZqAH1DSOVsROVC7pYSyiYKuVBvecVqo0ZXoxexpN8Gs67oozuwi5ABMo+GV1NNa qLbs1nSSAdhW3yQKo5zNnTyAv7g2jtmn7rruGgLBU//ijIPwvCXFzfwWQQy1Jf9OpeZJKI4T9GpR OzhyDL13ouuGowmk5n6Ci0kbxnWWxC58CQmU15r/3WpTM4WOxlGRJhyIoYpC6cKY6qoXVkuGlxyA 1bG43LiZyLDAjADhttSTr7I6E/sX8AIDDkQ3Ovi7QIbV0sh+MEuc+TG4iByE7Yoi64C4ancxEYFs VRenGM1jDkJXO3x1YAxdwlYHyjQkuotQi9gCZ5xfArM+GBELHGuLa2/1zzxHdwQ+wvMo40FMi2Pk Ru5JF5vlCCzfEp8jDkRJP3IAnvrp5Au4XFUcr1th00TZQ0QvgBi3kH0Xm3kr2XfxdWxhvcCGApjr fToTUoxe25+4K5yaLc7ocCIw7Bnmp3MiQWfat2FDgtAWBwRgOsPmObcYDylC71bDIUFpqJq4cEh8 N0M1DNGaS8FMq2vRZYBap9cq+TXKOBCju1x1gUzZctUF63j5IoDjdjoTQTxV0pUAZHR8iWkQcABG d7ESQdqOhFBnuSL+3eXu7mKN4uEdhgMiwcUK9vdRSM9HSQUB2/f/YQ2wcvPF7u4WMRSNbYKppq6S zSynOcV1jm4NdtPsMo+ms5JsAhzCkOc5peQ4nZQXuKf1HBliuxiPyUESKAO2O40b1AhWNGBPIEKD AHWGJVUeUEZ/ALibvegwYvsgCiEnsO5SbP/m7QBags9WXj4hSVoSek4T1u71/tHuy503JzvPDl4d nLwjUPT84OTN/vExef72iOyQw52jk4PdH17tHJHDH44O3x7vKwNONDie3/6DPCUqX6w3EjsXRXUE 4RGSWmQ0QNbSeTMHozH9SAMcx1E943DLYQTyHDFQkAZuppF5GtIY44oi+jjAnR8KIfs8q0qa12Ij MA5LTwOmiPaYjGEAQgJfkaRFVf9IcYxYcv4WGvGjRBXQrZxWLC4vU/Jh+OMGjkI3kDRsdSE9jSvW Rdve0s+w2XhMqxKY5pt5NVFkeIBmI0qCuAopflsZuWXhq2YnH/9qb/uM2X4sboAogAk5aneBHmBX HLbdMiC+kgp0ObI9DNTgFltiVAOtQAjKSILNk5Lg9XqNhqNqEgIuKNtJDvK0KBo6hOFx1FZglaR8 lThERTWZRB9JOiGoxlWJO8cCFW6jM+lSxPc4VI6myeTkGC2e+Aqvl6N0/AsNSnZQxrNkGw1L11O6 FrkitbYtpdZtKRY/AK4sQm7GtMKJxjQMT8lWWtZG4KIDdSe0u5pUI10d5gob5GGxap3yIFLr4hpO ry670ugK+fCDgGZlQYacDru2s2RzOL0lo47U2LuOcSWjjnR4XdfuZdTTDI7wt/onEl9/3YbBgOWV TqIElgLcsnrceBAfgll6RjcE2CiO6dSPYTLDwpLAHyENYj9vlufGlpMPTzaID61y8mGOKLJsCAsJ qts2gSUXz4e3Cc1zPGoKq5yte3M/x2Mj2pwIQdljkEGZswU8SnCxigK2zAkkZT6e3zBsZEwnuE/9 YE4f8EKzJQsKwdwG4Dqrj0bwOHh78DCaoDjI6WmQxVWBPwNCmCzInA4eUvAk2ruspmq6YvwXwkxr TqN3d9uwmia62GxXIuRguH3PaMLmK5jgM5DmZqvNFi6eOI+F5u3NCM44Q5UYqbbQkTRjB+SwMsOC j0dxPdbN1MzWkjLM+SrRWAq7/smcA3dlDnYyJ8OMB2tLeJZe1EQG6TSJYORDmsGggBcHUhrnfh7x 5Bp2azIhM6dzfwqahEeLw7ckvEz8eXNkyqQckmLm46Frje2Sw+W0+VvkEgA1tQ7yLHRdEdPEUOEu Ju8SnyGxH1DsiPJsGSDy/n8IqucwIUNKNorRfynf/Zv87ef3m/9+tru3/+Lo+OTn1V/fvd/CSvz5 7v3m+y2AOt0Z/qc//PXnxR/q0EOwb0fvNfJef2+Q98Yo2yDvv191yo+72TaYfoKuN9ifELTjFKFP z/0cZ3xf6y9diKf3IMVVsaXrXX/q+nK6nlfF/izKOQhCkKYlXbtNq32skp5xVY5seldJ4wqvloSU szW2ajZ87t9s/Hkkau/6d3yZlP7HjQ74jZdAtjTdzyq4oEuTqoJtOHcgIvSM68O7OiVsww9OkzSh H6OihFhOmW2w4Lk5dLtHJk3j2os4S+8C0nXyYAn6ANb2hlNWCINeKLNW6d9Fxr7nunf5nRMQKleN EfGtZY1bcDdQRwT/A6ojCyy76siOym8rIkc3/xjq6OAu8o3U0dGNu1NHxxE363beHB+AvWzJhvOD HPcupO+ZspF1He/+1xxxpXFd2aYLFJu4QbJoyFc5shbcOQQfbple5xC+uCxGODFhsDhAw71Tr8Qz pXPIQ+d7bVAJIHIurd7ouYfLovTLr5vJMgQd+8pZRBv3VbNY56V+1SzWo/h1W5woKf8EZrUMo+Tr NqpVAv5K+DWxyKW1hfEkSJQZqQp/HMVRye0PecvzvTviU3rMBsXuFXxaqtQFt1RN7eMT6kwJn+AX FzQJKAepa7d2JQGJbCQs7pRfpNAWEwwbKjkgp59F3RZ3QDsZe5bePjHrVhumiAKNc8aB2N3kgi5Q O5GyU9tNoE7Hv/CpmJbltTY2FSCTY9XWOsmYMGCrTd7mChc5PGjvUFvs6Gq5uTtJUty9nXPn/gDj 8DvUiBnwkEnsT9uNOqeXluN1Ty9a8MM9RHObKQM9yI5UoNi7asqwtLBuS7edlS7ok8tlXTaSQLcZ 4sVaGM2XjiBY8HIvEdOiSzFyikMg1U82SoKwJa2j5wlerBnGQMlp3Y4n0rpZiGu59nVCXDxkwTOW 545zuvfD69fvTl/vHLwZPCSkLufPXuBT722QB7sPEKg+goFiWEoFHJtb5DeM3SuA1p6Q3xfnNQA5 mPsQy29uDX7DO39P4KeBU58M2hn9lqfaPScolqe5kvGusizN8YSRjSaKlVcsz+xuWKd4OrAMUnUl vZ3We7beq6SebLrKiI55qj2nQzWnrgB/K6JtVZXtWkKx7NyUIw5gZLPcVvXeZdxWrbVjh1YoL8uo /ot+xENjTBjiULhy6yVrhzAt1m8nKFfOrXuVTbNVT2bTbE3tvbRia9Ic+95DyKUEuVMz/gzOZta3 pz9XNbvb/4ArDNKQLg7hSOaXswInfLqwOzyS9i2cKmmIoiEHY8hSBNjSm2HJknI8WM3SosATSw6B qfUYBqhqC605U1wILABu/AAsGDjGUdCm29HN1rxd3gIBBNyhLoAJUxhoLdM0vpb0oXWv9B3d0mWj nS4uyaxD6/Ter4A6ey3aeomSo23vs3NShtW273oWu74rS6M3ufb9FLuWJybdJrQsAp+7w+Paqizp lh0QyqB1eUZtL3zH6+MzNF2nnT8g1HmdGyBrszcBfhGT/ZW9yWdvuiwBu2M1oXhh/r/s7E1gRLae QPFCI26Tvel6jibxGqHYlEze62emeare6+NAncwy9KZ/earTu+Xvqd4dbVb8iTKsPE2VDfqdZFh5 uiaaZj6UrYe4Of/iGjrmIvP3TvZjAKFsz8JjS9ZaR8xjdyO7LQ2VW+wghEooDTm/xWM3IqW6jbCg 2WXu1/bRj7l2eDFpoU2TKgmYvGAoypTTws2Nq1sx9Y1qFWyabfU3u7bqFtOyvBzf51m0Z2A+HHde DD3Po1Q4J243MHon7OJhmY1OgxuzfrL7Yv9k535Zb2+lcZ6UZ1hO1+m+MufGMy2P8z/4HAjPXMy3 W+wLeiyt6do5EDX4Hy8HwjNdWXDrWertU3IAyR8jJceztBum5ADpd5eSA25a50KU43AA3avVIgR3 H4qv676Q8BxiLfA4ieOsc62hocaQ9bvW6OUskKGL3e+33a3zzXUMLECwiw9ZgTNN/rVzdARO8zv2 XBeaAZxM4OxlaC7L5nWt2L9QBu/SCoKuSxBbGGH4PAY3FZ11DJ3TCWl1McB5XG8eoNVl1Qsn7wV7 tSsmh9U4BtV6FQU0KagyeI5HuuhiYEyXz+tnu/xxWpXYtMD3woCavHi8DBnYFMDno0Ky+/bw3cGb F4PmqSNWvUjT/cCCxOGEjcxuHVtsKPy4ybJbPLalzIbzWn5/8xIYTPIh/pa/9KC2YoDdRVchG4xt oijY2hgtaQBFgnGfRB/xnbHVu2Kxn0wrfJDt6YQpGzIYRvnTb3+roX8fsfh9xC5I8pEGzvCY3nuo 4bGdn65I2VMiTKTdUAN9rE6o0Y0zPLZx1DE+nqutudXExxmS6cxhwrNNRiR4kEtL/Fx0Ctnek4RF Q7vKKXQNqb65Zu/1D8+1pPdcgEh5oOPaKx6G0xUdkw4XtpwL52ouHDkXbu9BnscCUN5wP3rEAeDx iHiTVQDxWuEgX6epqipeyth99GidzYYmqDeAZ81+CFT+GfdDUDayIcZyu5HZl70jgpzI7BSU6wut 6BqqR4/WGCoBi8xUYblz7T2Rlv7yOPBdEEbhTS/sNeFtoGEI3nINgxmsK2zsKHtTMc2Zo1lnBeLL RrDGUHyS75I86HbwQIKREB90vCQz+OXHOL6XZExBPXHIo0kEo4Y1GAEPxT4EZmUBOL4ke1UEjjCy EBzKnV5DBZWubDVBcUvtraZq+FZOMxw3vVj4BQ4IO0mSCJXddLtiQLQeq6LpvXeWoRLjvZZ8b7ql 8yXK2JErroaHLFfJWHotXANz6Py5xAhrxmo76wNmDmA+wObWxjYvL/RXP0C8WW6wTQjcRoAeNidR DnKuClyUcbFuMG11G2/u45ulrbZRCOsDEsqeVIMQm51MwjIVX8L/mrWdYiPMaVjSCCxDyABSxGNP he9IX973uWbcDbS57heQmYGCJ5umvvVkbY7GX2bgLzPwqWLUpXflsPyq6/oIIzs4g3Lu9QFxOxXE 27OhCi3thbtww/3AAPf11LsUOY/u7uTtyA5ToZwds33VnHvmNu4NiHuY2+RNSooKX7bGnStMY5W2 N6QbHGutvO7d3RUzIKCd8FIPFV9v2V/5EBq2LH8KyjH16uvm3LVup7zeDXNHsUvzDpWX3dUW3p4D NwP+G8ZzHlJfnMnc4+1F6JSIVxiha0O+GLFL1+JiJEDIlyLb7E2BhMrOy4JFj0g88/9NJOjOrKYH 1MQReMS4FYLXg+o3dKsoLodR26MHRjYEFuRbBY4q2SoQIOSOlqOtiUudzuNkK3VLgiovRHjL+BwS bromtbBFWTuWXIkcS5JZykP0GEanP8VOU73OO8JhnGa0kVIY88CG5F2wuxdQGJOWmKRSkt82wnLJ dSMBQq6DLPeuV0qOeHMjj0/xgZqxH5ydokk/xYzSWmj4Fc1nG4PGsqPvX3SLvkktRokU8c5BM5XJ HJiNcBt3lUvCzgOLy/k4jcnps93B4ugM80Ib3Ep4Cd82Wc5G4sdKkW61EGB7oWFDQ9MOfk6xbeBn irTlTSj84fATKeQb3oRCaHkTCg8/VYaHV8kwq8pCQt/hrqB40jATt/TWzxSNvRQra6n3noVBpSm+ Gr3+DQRN0+zeVGiodKSZ79GcKjOCJ8js6n/9Fc+/x2k5A+eKNPOG+xcHNF3tXp+4ReoZIJTHrdo1 4latJ27V9HXS1U0xuwI9PXS0IKz1y1oVYLbvHRzx7RztjjmXHjBiuXM159I0HChvP7grcm6oogVe XEMI6n8ODYtx4eJv5EFD4/Ma3j67y9Mkn5OGedWcZPljkpamagpJizn97wp0g58B7CGqzqMSF360 1KCoIIdvjw9+UjSyeiOOx2HZd6tLliWXhmVf9SolwsjlYa05QNKYh7+Ugp9nPpBJy54bxFr9j+Dc Jce2KfXUoNy6kmPblJ7uaHb/dWmo5IKMNseSu8QIfvt3aQBLj42wvd6kcbD3mhgitqgVINcxzA1x GH/GscWrfVwiIPb+eZL/2pp13RBfu+mLXPheQoqR/cNoQl7u/Lh/evzu+PTk3eH+8enLwUOyAly9 yvP94miBa3N8snPSbVI/ccO1OD7Z2z19ub+zt390zIE3j8V8LxQC0TWGuKBYtejzZO/VwTPWoxxH 06NI6v+x9+zvaRvL9tfjv0I37VfbabBBEmDcj/NdgnHKqV8HkyZN3aPKIECNLOlIwo7b2//9zqwe 6LGLHgg/avK1ib3z2NnZmdHMSrs7HPTP3rmCTrj/CQvDffuti3PaOz0f/Bxj7Z+CEmId7tc9BYai GtJfXJn+cSNJ/P7ZkKL9xdkdVEUAUVIRqrtkw1LE+7M+UEa78Y+WCInlg9Du/8mOUbqxJEQRj11n bGrEjyx7UC9t5l1FBoHzrSJTlN9inUJLi7pIzw638bnj42tYyUMgEGtJZhsN2Io2ecyITbrfhOxN yH5pIZsYftGY7Trtgwbth3XU9Udtmv5zhW3CIHvcjgRdiNjOQybKj1sE+aN9+gWQJ2nR4meiGTK+ qzENEise76kaE2TzfN08X1/a8zXmAkWftHGXftBn7mO58fqfvstnJ9dzOMaq6BPZnEu4vG0Zj7qA FRFjE7Y3YfvFhe2wAxQO2hFnftiQ/SgO/AABe8m85AvXYUYFg/XUMl9M8eSOtWQbJlCvfZ/0cNhk H9QzVceSs00jwu1hNjmVwrXkgAQiz3zEpsl4wgqNmmf1qP6hsKTks5/p8iBeulKNSsZUtEJVFUVp 1sXHTHECETbpzSa9eWnpTWD8RVObhQM/aFrz8E67/pSGNRe50pmAScFUBuknD5nNUOMxSrAJx5tw /BLDMdr+KtF4sob8PD0YP6jHPkwspkxE7lA8WZobL43EZDKUF1NXBsN9+m/lfFGLFj264oyvX8zE +qN9+vPqSbrCtOK3qiDsS5rbxZDXuSYU7uiQx7PVGWtDqi7J47GVWHmJMBBq7MWlOdnOtZyafSRt FmpxCbU9MyyG6I19PKlwdljjl3UP+cgBa/ALDstEAA61RjoL9hQQFgKfykJMYZE+DjyZb0UOzZU1 gV60oibq7DN2M7Jo1IqcVS5Jb3vv+mfSUa97cpnWQb1AB4SD5J4NLtmmPFLW00uqdhqrCo9rszk6 ofLGQ1GDiX2zDpHzMH0GIpZpAUUORI9YAB7/pI9zdFOCgosInS3yNfDurBIlPViHKRRhmsEUWis+ NQiHFY1Jg7wnRy8lzFARmfMw3YhYhogl2jlf5Cj+iJXqQJajk9XVW0jkjE7L11ZVBwSMtPgf7qQE dRQReb3qSGXLLk6ob8Rp9AVnyXJmUPhlyTLDnZQwS0VEXgvTDNMjrqjeDHlwuI8StFtE4rUwzaDd 4jWSq115nBpg6qUqt4jAI0O382jikcRMZbqeQoMvXmi4NqDJtjMzzBzdlKDgIkKvhWm6goXiz3Hv CaFM8Yx4ex39vE5jWmSZJiz8VHFwfTNHN6tbRyGh18I0g3Wsmj+AgvGu8FTrKDWFKCT1Wphm0PBK C4FZEgih1IdHIXkz5arCSquK2RaUhFJX7ApJnIdpCSKu41FUiGlqLC+2POVPP37ua89y9FGCbtex SldQDanOtdIaGzzkHelW1nJ0UoJ617E49MxELNECxJUWbLIsXomlrtYUkjcP00cSMeOCksh+p57p aSqWmrOK68hZCzFNe4yIxTNW7zGSlkOIpeaqheTNw7QEEYss72Qz0iKcUy1gtYx6mulRJ5aaVBcS OQ/TZyBimY869ocs2cyyeCUCVW+mNXOx1Cy/kMBrYZphclZa0ctS8IqlLuYVkjcP042IZYhYpoUW r0TRQtPfOoillqGFxM3y1qEQ49Snc/FCFJVrKXj1aWp0LbXKKyTyWpimKbde/BsF8uDKtpRfqJdU 0Vd6D5FxIb9eavlXSOS1MCUx7RlsbvcGu6/GTzTNsS/AvBu/mA0B7lif/lYPImfRCfUP/N+fqbZD tiu+kNmlDLzsTR8L3P2gN0vDisjdpHfYYO8aOO6f9J5FVEnqcWVTDG6XeXG2GBr50zNGOotA4kOx yt76kY1DvcZeO8jKgb0JJhuHZpP9SXVGDgdpenhObr0YWA6/ThykHuxfj+FlPkodjwYwIQu7eTFB ITzip5+EhKQtGv/J6Q+KpoxezhU2kSGvc89puKPDRpGF/2X76yLcl0Q/8vZtGa13IkORBRVXY88i toaHvJKzGKPPL+i+p8iQ1+4sXkeHzWW7aikbpCPEfN7N2THqnJuzo9RL91bTNmfHyPPu7Y6SCyvp TWQHEQghDTHxFilCLiw5cHFE3VIfI0/Zlb6cOGUr+HJidgKcSfCULeDLiMVqyg70pcSNZRsRU61F XCJ4hnGLeO5lcfJlZYdNfWeZJM9+bmaStsiJnTEubPVlGkBzhQE0SxkA++CBTANgW19W8sLjb5Ux fp4d77IMAMmLDiC8T3GFASz5YsoX4rmkZt6gVqp3g5PsVil4vRuBX0565w34eZS7rrCrJPDIwX5x E2w/qxmOr1nlnOK5Y+NrzRc1yYsxP49pDuRdJeL7J2Fmj/fNeuSuSMvSDaaZNOslm0mzQTeTZiPd TJoNupk0m0s01jyoUUZLNZDmQRkG0mzRDeSgtsRADoS4gXiSxrCWDTQyrWATsjV9MfMaDPfpT6wv ao6ZFemvNeKBQ1zi9Ac4DwGPu5nizBTgozi/3+BZt+n31h+0auVazAFLna1mqsW08JUfhbaFcZal ghYfn4p3Z++5Lqep15Zs3XN3qjPj8EMzLET+2eb4KDV+ts44dLaFz6nQW1VnbumkFuGMCWerU1xK nsn6WAPmUcKyldpiKLWVrlS+SlcqXw0r9dZQxzHoQfy7ELxaJIqDOUCJwwSG1IjBV/FDqrRh1qkq 4qsNkWk7fBUXyKIuSIrLCFKtKpQ7zBoujVFErVVbqcOs1agBma/x7GjF1wQxNsxr7fNId+IDbZRr tjzEv/DbFwzidmwNIC/62mp+rq8v1it+u5FVffswKd1vvuK2yfIEvkZSxtzORLVg1ua2guydGYRd n9VuksdOTx7NwuTqWNEddaJC5AZKkNuwHGg2dO0e/oo+9FwWJJNALoHEqsPhpmkZ1KDqe5ReTQAp rqa4awUYKNz27jbnGJ8VPWYFeY8QB/tqbQ793xz6X96h/2gz3HGzKR29Pz39WTrt9M9IR6Rdkkam Nrfx/y0O/7jvdblX3VeI5PLgUCwnxmNnl/vTf47Xvuf+8jsEzC30eG5nd+vPLZB1Z8f3c+71Llfd BXYeWfV7AsfHBCQBAdpuFIXjvo/8/lfMH6usnIOvteKhOkg4yDoipyn61IlkiDyPx8mUGbf56LF7 aXGbpy5aQ19aQFF91NBNBPwNFQjaKxq7CZPVYjdhkS92E5LMsZsXqnljN+SHeWO3HxsZYdr10kWI Pu/+2CORIhqjvWXxuNd/UHWBD+HeqTqihhAfOz7sYLK8O1UclMswHW6n9oZz/zt7f3LyBqKDb2kQ PbBpNyUglOzA2fwhcEFTdj+AgfKVq2Ok+W0xtm1uYhk3GKuD8pEzDdCH4gYmhvVVY+1Cal7LC/Sc mK8Li1jpJufc6ygGvitOlMDX9w5ETWuskLgCrnmtTnEy5ZjDtMpdMAEV0PNzoZq6YAI49PJHEEqu swSB0ZGYXmcJIr3OEutLChCxGV/qkHWuc3bZ57oVxDOsGwSMcCNbhLAullyS1Bni18X0Srpep9t3 vcFenuDrzXps6BhNwhgNNJkyx9hAW6PI2UD7Shljo1aj0+IKNWuM5NDIxaIdeCmGkfg4W8E4jaD3 HAOunCAKJNr40wKMDSFdVDT/C2P4cazBX/poDk9PG3664RKqajFU1aqCOezt+4yjsBrdDFpCyAzE KEhsxYxAM/RpFAWXIsq0ghZ+eU4TE+9YTbGC1gFDLa062wparQOKFcQHKvDBQJ+MGYBMVF0JPK5G 080AYNRIIghVkWEGglCLh0HUTlJFJD6XaAsCCew0WTEaLrcFwGnSaZe8xROERpVhC8nRNoLRPh2D aDAURk5jYRgEOWSBRtMILeAfREH4aWDSIMbGPLZOLzRxFffhUkShieuJQYqI1REmhiHptkn+9z0U L7Y7vzfyPQxF1qekkJKBPSS7CgxcU2RbWcJ852TBFd9rIQNaKRWqnKCc2VvCcWhwY9WWkR8p6DzA GzKOygfdqOBAKm6X0YILFC1QZ7GJi7YprtKs0sNIE/NtlqsQ0emukrQDsRrYwVNxlqgpodx44k7U mlotYX3WFGVehjVFOa5gTTBdVGuC9jorjgCMmp2LVf6AEUfEqtCg1EBoJvJopJig1MopGTDUQApu fEAVKXjGpqKP1KhBiuQtDMNaRfIqhtqTPTdRxzaJUAaHW9P2NCNG7FdbnsGOIlZncMPTi0AnQMzV YnFZrNLfR0N7fWXODK032a9fRXLhWKCNmXHHOQbo2MH3jdcGmAf4EAEZc8ecO24xPW02o0xIedds hkJ7IOkk/mQCbLqctfTaDXCoKYtYa1Y9CShB5TZT0JhkCRoDQCBBzlRGtqsMj/M+zF0F/zWNO8Uy RxXZNDWlMpatOzxLobov7NX2CdlW1xd8TF7tghvtIbWwH4yIq+BC40T90gbu8Iuio/NWNIgmc4gH dnuCQ62oUHeOVav9zZ8u9l/79ky2lH1s3xrOcDRkpVHDhQd9CoG4g0JxXeMG5lKx3kDkG+1x77rd 4PVyrVavvcFFShJpiEH6IBgAx1erfFXkq9wO9OiFst2tXDoA0WsRrU8u+l2u8t+5ClZXGc9vTOw9 guHPoycIzPH+rWztOzfm/v5o9EGf3fY+7dlb+Nb8GBSTKjD8Qhdwd+sfuExE1hqv773X8Kns9rY4 GWxEtiAUm+YoLt+/Pyni5b/3GEJz2jhMOr7X5Rs19nDURpZTAwbkh2tlqur4C9umA1CWCcmHvQ+2 Sv6jD3G5C1W0iSc//Djl8TFNIp52eW87yg33f1vc6Lvv4GnmCBHv5sNfnlVuY7B4YXoMMdySdQ4s wf2CIv544LGW3QSLFxksvvSdP3j16QYL68OX97/f7DGE/lsEi2CI6wkWYjW03v5E1ZF75O6Yo+Ns PP5i5N9CvRVTDZkVBm5tfMjdgP2oGP8WO39s8hL7/uba0Djp7GPHmnr7ZFEwTw8LbET2sLAAtBW3 vtyRpKPOsPNGksayI++uziCzsLeZ+rpdVdilDLIIK0n4mhc/QE/rb4G5gtDZmGQSfHyvjSVcSZA0 w/g8NxNdm5Z6KztKeB9/VJY4h5hIw97HIYjkAH1yXKUyzz5ehEgkASso0YJB+aPNxjvTYG1Htpz8 YhCyUgeWyjHLcBT9VrUMPc05PLQV3CsDhwzyksm0nfm1dK3qmFRLM0UzFSuv9lh8SpygIl1k0ADd /KJd57a1nOTZorf7UJawSJFI4jtV4clqSRMLYqxEyo08T/VQXpGI3OldLdXGk5AClTqS9W2HwywJ 7ApXc7GQPVykJ7HEr57zEylRFIUMn0g99mdJy78xEsWDeKUP9d/NPUcYOAZZqXT3SqSuAJDd2U8i d36eKXP+dHkTFnJKETXX3B5fr/4NPL7+ZErcjZtu3DTdTfM/mOuZHsxfu8eIxFyMw78kaePDGx/e +PCz9uGNC29ceOPCz9WFJQk9aePDGx/e+PBz9WHXVzcevPHgjQc/Tw+WNi68ceGNCz9rF9748MaH Nz78rH0Y/WiznrVx4Y0LP28X3vjwxoc3PvxsffhZLEm3QqeNzPXPunEXOdpIJMfKkDPDDoNtqI4R fN0VfNrlbq3qEm3aW1tff81VYn+4r7/G5q48mincLRDhDil7z2umYW/JI2l0K13PVW3cpttPLYwj yZoq2ymYIyk4w6mNG3H9Vm8bkSVN9XkMoNtOuOXLFxayot9K3a5kK0472nIra3Ml0nZ80nl3mcB0 W5PYF30GQQCg0FwwSC7YFBRkCt7HjzRUt5WGTZfDb6dRMMcbAtHoKPhJvGM+MUXYlMQDd4vjQVMS jyrqMUPKY9bYjtkjOzmiUvjNCXzyQpveSxhEp6MPJwyi0zGEjMBYlAwiGv6PvSQytCUwB9LbzrD7 wyUeIBgjCIModBedi97gsv+JQrcA0egG/bNh9zQxmBAkQXX5Ax4ES5+qCIxF+fEjQ+8J+DIOS4hZ dHQzicAYlEsFTpGWJSpNzmH3ZPgjMw7GoAxq4M2gJJAEVeg5FCcLgxJ0M8N26GQhSILKka2pwqCL wKKUXxRIMvzfJhDSGI8zBJHPu0km0/bTAw8Ij367vc39HXYfBon4tje4GRCDOmTLlCHFBDXOQmrx gGPVUnTH/4eGoEGrbsQbJyOdhq1oEwo6ueiDhg5cHI0K0AxyMgs5X5PCcWLOMaVxLIMm3tQyaUxV RVGadZFCgJCJSQN4xz7T2BFjUGgQ96RqGgRmYXzNAJApUqlqNe/GtGbfOqQZVBOMHgOcBXISyb2w gwEZUVtVurm453/TIRbZwsSCUHVs39sSufuaBXQv+2VCycG6TKgjM2F4P9UyGFNaprkg0LsOiQW+ k1WqQNhhstU9KzyKD2E2pXJYROIURJxGcP6xZphKuMjA9hs3lsYb7USbF69o6AvD1CQ8H/taHn0m jeQK2xCycf07RnrfM03ZmUlHP/UvLtuhmOwoQ+Xj/rWqUyNrBcTAALc/vlVNO8zoXW/44ajtEt6N w5B/dX7qdN0uEPq7fCuPwvCTDtToBUTQZCjqw4ww8+ufHRVidiN/VlR9TGN4fC5BsoYneRA2LuYk osWLzrveIMCAOjaimgtMYoqN0RxPEsMEdoWZxVn1BieLmTEVSwtDITEenH+4xJEt+kJEiK/2SDaV KPL7s0/9C6Ipn+Fc/0M1o0hxlBhCsYHFRqVChQ5+0N72J8Rr4Coj/4mOyztSZ9CWrUjDhx/bU/nu c7gNUsL2NlnV7EWI3QIXQN99FwdBWdjG87hCTT93ut329rVq4/En9xFs/NGRAAydUNo/fmxDF0nA oHMGOWfbknWIAUkwXtZw0cYHghkGjkbSNBQR/DbycIq0ffmSRMQEkNp4267chttgJJJjyWOycCdr i2SAQNGB3L8wR12wsxU8RkXCKImH4mzrho5n8/13DinV2FeZe0cCphNtMdqE5+XR2iT3DL32AQVE aHwAPnAk/+6FhcykGftbSEqaCC2lze+PBqLRkCuQ4o3uRVBtcoNSpBnPKifImoOtQao+kgxaswFd htrHiol5urv9HrIrZ2aM29u4uxUmZKqOuFN5NKucc94pNuAz92SZTxlz5GSisX8B1rbHcEEqjW6A VeDXZMds5YSChwv55Pd2sPUZ/ncT7r3xPVqzSzPVjGtZk9zFbskxYIzkmY+XZUOEbW/jGUcV8CeF 277a3rb3/3PIXe388h/u19dXu9w3+xz359Wrq9rVqzfcDnA0HWuXq/71Zt9E7BDVL2+7R713g8vh ryHy4CfC59UVH+Zy9e0V7zPaZkqL1zlQhNzj9l4D+z3C21vexQc1d1X7PsoS6kNLgfx9DFm8PG1X LK/dfWqGgqg2DkPOTkPzoEN5Y/oMfXcfybpXf7qzGrIQHwXKDMSAXLodg5jqCOu8iW5UwMxuDD3O HRCkO8P6bFPY2jOY3zhHTB+BKbXV4wTeGIXeae3KB+1NuBWqVVDZAhUTweismKqp0Gbk9S/cP36F GQ8MYfETzBIC8f/XVzvS1S6gSZ3KJ7nyx6/+D9VKy7WUqxp3xV8J3JUQnUg3+YapsRXMwaHCaB9u WeE6C7Qy4lH0cKt7455kGrb6hejSikziwrkj7TexJj9fkW7FGASf99JtfdHqxhj3nom2d2lZbDXe W59fvO+grNiTxXr/LchFp/sjZEfSWee0x70avEoAhp2BC7OSsJ9wee38jHtV24OaPgl3ryQCthwD 4e37d4PexflgCOwr1/Op/b+DCoz9dyh19gxrmiCISMjqfSBdQD53fD445V4xUv8wcvfifYAXbv+p d3Z0PuBeEdIw4PySe0Xh9F5Xv3C14NfIfU+L5vjNVzSQe8FVAuJdQ5Vsd++Zirf7d0vR8SldLy6E onRNLn6Kt/s3O8Xbj06Ou2duc/K9WeRaGc27Q8u7DibMBAZ7GmcMbWfd94PLXkKlADk6oTQOYAZO +me99JkZ9k970of+8Ad3euC3xLD6gx5NDYj/odOnQDqDiw7otUcBhXQUbobG4Umy+d3gItl4ct7t nPSS7dDfEcVQoJmI0qd0e/GBMo2+7qQfYJqpthRgLFAzmxtq7aIz6JwynKB30usylO1fL5TDebwp ZUMYEr4fXmL4y277vcHg7JzqQp0BxUtZ3kuucAUlDP91ehGCDXrDy/47dFP3+k6/Pbi6jJy0H1g6 6OmkdyYN/SsufcCH88HRpfS2/w5iXL9zFnaO/qfe+THGAk4MGtH5BR7wh5dJ1JNzCPEirdUFHVBB R+fv3570ABh+ua98UR3o4Kvlf1yCPc2Y7hmfU3CL/qnWqtWGKH5VhT/NRp38W+Xd36tilRfq8HOz LjTrdVEQqtBeE6pC86vqmuSJ/JnjsUPQ5VjRFGV+x8QDtMnkIQR62D9Dcl8bFjC4Mi6rus3J+j13 A0UHHt6K34aM5yP3iFG/0rK5uxn8u2XNdd27dcg1ujf4fYSsjrmxAvnHlFwcNVmAOUzPgD93o4I2 Pyt7W1t9B7864UaWIjtuJ4MQPslF3mBvoxnibXmnry9OPO3MHQPxOX6vLuxxXF+/xVOMyPV5kLDL OlZx4C1IvMVx34SYVyp4WE/FGf1/e9/a3raNNHq+rn8F3+6eddLGMu8X97jPcWQn9dax/dhOk+6b fVVKomTWFKkVKV+6u+e3nxmQlAgQIKmLHacRn93UAgaDwWAwGAyAQbCTJu7n2y2QlIa9bcXXM7Cb EtRNESiLenuxQ6x+2pLMrMbzwE3woaaSFUlsSHSxkiiA+1IPUfWjnmm3BhP391EStqAxW1OSvTMC iHO0sHABC2v1KL7OsyaQBRzLf8bw85DYVnnK7SxF+gnWYl4g/ZwFjIVie9Klm0h/mwaSakmKtqfY e4YqnR9ekUiy30uTKEr27sPpLvx/R9P1VtT97f8puxcwtxxcgpI9b0tbWwV/GKlxDDVm9uBWMf0j OfGzPzt4k2aS2LLUN4eYYSZAOzd8AOikW+9+Fx9ge4jJEak5ALKYJLFVoCdAukkZkkXQ3dv6UwWn tlbl1NbWVoZ2JpB9ElNqOsYxpErZ+43RJG5tFX9JsIaVxtfQttRj4d66foDy0to6z4HIUxB7GKPX 0g1ZekGkBXoHf72cgwGuXuLfAqQM88T5xB/ha9/pNtQc756kGBq0WYacoYuvwgFFh97AnQbJnC58 MX1PMhQpceOb+JWkKKqUkKDO8KNI/9YJrPEBOwzjIeJuqdarlP8DoAaPWsktW9+a9Wnqhe5d4yCu lIooDrxb4GcJIBU6H/vV42HYOj+4+nFPyvynhV/x/GerCVBOSvEnmz3zK5cTi6DFOhjgj4pyYRYB MEy2n+q8ePc8PcqHj8HtHnTjaJDwKwvc0Y7ZMrsKPxsFuHOrtWSlJZt8kOvxgJ/x43R47cX8vNdA H5ga5Ywk0PglxrcjDdWtOGcXbMEPx6cCAOx9EcBo3OsJ2OOHfddsqTswhnai+H43++9Olw/f0HfP LQt6xccjefzcqO+HozGbVxKCRUnZEvg62vg0KnoteacTyTxVOCFp2OzLfK70+vJwp/DUZbYbUSxl aoW3fMq7FhSoIfNepkRvnpQF9hxBY/B9mtgNqUdtTEcTvjpiyTYHLRonqMZi6S//ws0w6rSopYqf dLGop7qQDejHIw+C9kif7Cgt6hkzyyo8BQi2EMa7p/NZvs4QZuYOBW0X3o0krwVTuY6QOMCFbWap s+Vq6my5irrUnUfBK1X02aqIvtneIwVtVeGintZJxSROT5mzT63aZkEIBcdqKHjLot6piRMhZkdZ BLOqqiw7cUu5CKBrWVul2Y5zMdsoPK/DBTAN0SDq++TR5XjSg7+oMpYuEndVtdkn18g2YhHCcWYU Z+ObBdHkAv9LmQrvQdogRIuWuMgpYFU40FWt9GpqtoVYhLGtGbG5LcGBcgrjv5ytK+yj42T7kwLB xy1pppRh9MKR9HwDlQIwShqX6jfyTCzTGAbCLognnWWUBnZ6fKEIomol/GUgrfDGZQWYwY58cpag CIEvStEsK4EUX4IXAZGD/PQQw93/IoQql9pVgtFUTrNKULrGkV2Emr3NASPOxWfoXVAiBhjWBlXe EI88S7XYCLTkZEoRRDeohixxzqWIrfhC5TrwWWxH4GmGIoAjL08+g8uW2f5aCZvC8j49q1IE0Vbg fRmbvhLvy/hKunB+DKgIZjvLN4KL0SnaE+vCqZjsiE7P+xRhNH35lnDQ6eYqzeAgNNkOmR2AKkJZ K/QHF6GzUndwUGqywk4cHNtNkzWN1eZcMN0oa3QeoFKqNT2CVQTRytNVGUjnTVdlsJKVzwJYdqky FqR45UwEpJVsCTwsVQTQypMVC1I0JJg8w2bxt2ee3XyOouGt7Krr7FGr/7Pb9253wyks2PD6ptpy jJZKlXF4L3xDcn5r9pbFwXusLDsy4917PWzgbiqKuBbfTavM3ijjPhSW04pn5x3NaqmCl8JSTJLi wMCQVV16MXspjCKc95w3JOes+ZltD6SifTWckgVqEkm/7vy8jVN/eUWlmbLMuZ2pmSqr5Aod1c88 cOm7mHSx7I3Q9V1EZt7Q1IgpVGaHaRZGktuKGLos3mIe/ik2izXvoZSJ77xysPFeCtZMR2g+aZbM e3n1ziMu1d4kiuOMDqZ7rOKLXmFEZ7FdFE8HA/8eL/Ci2E4TctOTLsJ5rPvxuspSeO9wa5ZWaBOd wb5yMG8RnqnuJWS3iG6Sqc2e1l7pUW3AxHsBXLPsgmDRHWDzlopZn05jcmUXJCx9HC+XsiICGy2J tdBuK1yJtPGth8pnZQGEq11sTfg+vGZzlxnUe8WUDNumRb1+vlJDLa5yt/Ep9pqGWtzutW3hC8Ga o2jrebY9/bmn4l3vdAu9T3w3r7Kp9NfedXTjbTOwfhB4QzcoPrbTC/BYG0wdr3JdLv36/bbkQqmJ 9OsIUYzH+CQmilvhFWxykzyW+tMJmedG+NgNQGVbI+Q97ImXTB7IrmmIk5XfIy9iMiSNXdzIINik rjdAh21aa5FpZuPr/v4gLF/GJ7yQRl5+lmiOJH3cml4I9fEh73RLtt0uwioKa2tmJziLMJQD0B+Q 8UrO4U6kF4UyL3HyxHHMFC+uyinlDFnskq2ATorGZJcYZub03KlIu6VvPs9ef53QWayyZNzf4YgC t3mWJjm1SoMVOZy9iY3iNAz92MueHXfBqgg4j8vomlkYTEucdqZwWcX25RvqQE0qg3QTyqaIrqPN vI7BO8PHewweki2WnwUFJH36t1Q4BrvQGdgFjsBKn36YV0r3u15UmG4YRihlwMhwlB4Qv3XJ61yi 0l86Exc5SNyUi/PkJ3lLifwZJ/hqLMNNgzt360ZxfyG6obIs3vCehpkpPJ8SIkrXmLKetfNosf6n kcjC+e/yIUzc++0S+MJTIJmaHmcWzOlSuKJgatYaWISWcbqLlZ6L2nbxhkDo3WPwnTBpXW9LZASn u0+P2EhdWyxmD5CuNgnZMzsyzDbsB6p6m3YhAFOpbFwRr8xr9EUtII4I/gzFkSwsy+JI9oxXZZGl 6s9DHC10py4kjpbaKIJUM3G0LNZrdXB6eQz6ssAbyg6y7HVw39F5PWtbzuPPOexMY9s8pwsk6+gg yQvSWRavBOWQp5dbulPajY4f4l1yPb11TQFq9lqtEkfnjiEHje/KRSWA8FtpCFfPglbiJaw/diOz KyJ/6CaijvtDNzE9oPmHbmIW2+MP3cY8SMwfupFpyJc/dBPTgCp/pCZS57tI0KbWtTSN3a4f+Anl H3Jm+3lraid3mw2S7Zp2GjLXBDdkRRa1E/J0TjvBLo69sOdRkKqysikJSHg9YVDb3SyFJnvSLqOS ArLETVRN1gNaOrpmqMUds3K2prMo0jgbRRCzvMteBiqeKCzllk8SR93f6DOJhuEUHJstDO1QzDWV 0qlE6LC5kze7xySdHxc91AbZupo5d+f3/GkYi/ZQI2bAI2GkgmKh0u6lYTnl3YsC/M4holllyEAN vC0VSHbqhgw5H1UuaRePZzPyZFPHDzNOpLELMmZkP0qMIIuXR1kx5VWyK6eCr7/igXvqaARQuWCY ZMM2v/h3rg1HNgVbKIaj2JwOn47H0QS3GEl3IjtpyXL0ssc6wu2B2SpVxTiJq4i9Y6pCKXV445VH dEBT7Vglqil5BfiViDZlmee2hGTexilFHMDwhrkpq8J53JSNyr5DNTRJEj/9y7vHXWO8QkShsPnq i1cOYQpNX41RNr+1dp1SM2WHp9RMRRZe3zAV7mlz4S7kjIPUthm9CWcS9Suoz5b1sv8fcPV7Ud/L d+EkDKES44CPcr1DIyneR5mGGVFen4LReGcEyNw7xpR5AHM/lsZRHOOWJYVAVwSKAbKKTMs2FXOG YYQftwcaDCxjv1ek21L1wrid3YcABNSuLoAxQxhoTaIoaMR9KC3kvqUaKq+3o/y6SBVaS3jTAPLM SrTpHMVHW3S0U1yG6VZ0UYlcY+UdKNep8mKKbcNhj5/OIt0VoEyZd/yUiotXhFb5Z0uF8CWzjz6r aFvFAwRMnlO6C1F5jhHg80VZ43OMNjmjW1InkJzrxS/rHCMQzlOskJyzZpVzjLZjKRzzCZJ1jhQ3 P6PlyKpwsoc83hARHoRyZEvo/HZkZ03L9q/orBEIG6/T13LWyFEVVkfRi7q0i7OdIKqgpednYNfi mQCEvNW7Q3R3pUXikOty5ZKaTGl9WEuEntenJnCHXJLjyjbCgmQX4k5S5fCuSi5Ng2mYvg8DXZFE lBS+2K4vNX+UZlbspbhYY9GNh0ny0H3MXVlHw5Nh1M4p1DzyI2bHtFhAEw7YPM7IdqnAwk2/ar89 ujp43KYXnUqUSeFohlW2PmtPnzi64VATMX0awNHz8baCh8whB3wanwZIwZ/faQBHt3mrPMeQVz+c Akiex+EUx1AWPJwCpK/vcAqYZaU7MpZFAZRv27IQ1BUZOq98aT5/9MmyqmxMKKgQZGIbE62cHNmL t+22hC89YNQYWVdl6QV55iu1216Ks7ba0fhh4g+vE+lF+yWBkd5MPE+6jAbJHZpVb7Dp2ShAM3KL qhiaAKs+jGsknZ5JHw4uLg5Or34h0ZtQDeBgAmNvjOoyyYItBe5da+uXaAqrjwdgW9/HdWQX7FRA NsY1ZDSQClVs4ThOV9GodUl2buS9JUGcAul82g1AtE78nhfGXmvrDW5uoomBi5vJKI3i5HajaYJF YwwfBdRM4ldSDE1FbGQIYDyhvtQ+O//l+PTtVhb9hmTnB1Z/JaulnQHpGWQd9Op2i+433jkPhzhX SXc2svMXeK0jNfjbeVV90hl7UquFpbXdGQ0gSNDvA/8ew07Nw0wFbjicYnyu/QERNmwgxpH+y79S 6P/skoXsLrkzd0Xi8JAhHOxJOMJhmc9da6A85nKrKIYiWGqI5ZLiHe86hEOiSxCWlpcaaGOVlhrl dYZDPCgl5ePYSsX9HnqdwRnOFCbc5SNEggU508RvWKOQOGE4TdSUOqPQ1rjyZuvCixCObXBvfACR /IWObc7bsDOc0zEotcLkt8Kqb4XFb4Ut3NJyyAKUVtzffUcB4EYBe7mRAXEKy0E6T5Flmb2e0P7u uyqdDUVQbkho+8aOASzEazummxmyL8s1gJTzBiykqzl7yiP2u+8qRiyDhTdmMd1q7BwodCSNA2Mm EAoXvcPFrvMQF2+hhwEs61Z6CMNb6kG6JRwQkGnztBa2hjuuYbmNYTqy1i56lavcXuIZ59BMru7U tFcRjAFFFV7ChEw02wvkL7oy5zTB4rNdQZ9sXRO410hhlBBrfZ1Uqtwz65hed20OYXhuOxzLWsVi DqgXLOegpJkL0YKrkR6NxuL5RyGdeNJWR49mGbsQ2JNOIymeYsRANP/wVIQPixx8yooqrHGthKo3 b6G+9Z1YBgKK2ycpM+h8w1wHkzSTt+UF6bhbtgb0OJsv3QfOghvqWJ++xj4gN1iY0BSwqCWv341o SNV6pBMKBa9i+m43qxrIYpXTg+QqCqsaGAi+YjB14b4wZJYCj8QCljj6Z2MJ6u6ZywJzYKmYEGsA D02mIbbwzQ5Y+sydlb9CQ7aZJvCnc0vmTOcMBH9WsZSKyc0qhWyYi1v2qhkNb2hPweH8AciU2Syv LYMvRJbB2W6nIQSqxxLvOyqyUwozlr4Wl3KpH9DAGidawvoZ1A8k5p3MEpf4ZzAxnXMIk4HgyyDZ kBRyyWLPs3FfvEuZlr+KV8SgkCMjj8+62WOjvNdGyyexsjEtjaDVPq5p5hsMxEmUvl4jdV63t3J/ Cu6aZ5Wkbya9II780A1acfSygADLMwUzYrJy+IIglu254xa/5DKkvj9fklS64CKkYsllSD1flqvn dVyFdWnMIfS8zcgk19zGJUP1IFJIjCleSVXoMoFMnY03V31pDBY9pvDoCGRa3JNC/shrXUvoaCR3 pdKf6CbtRsm11EV/JhlSVKxSRZXLx81W2KEEhPwFhtJggaEIFhiKWsVdVWed8OmDwND65NpNUlEA RXB4fEGXs5Q1t5zrh8J0q77l3N0aSHeEx6oVfJ2CjYGRHdvqpY8oYHL2th9dUHtanSxSyTRN/DGp 6XVjkmwzckrqss7sbecvG1Jg5OZ+6RYePmebS5AfS+TplpYizYNq0DgMc72yZBh8bhhmXRgfhOHz w6jw/yjE+J9xAZ/d3sU3nQVXLpQ0fPaqLT4O04VbrplSbyRVjWntpXNMBrNbIG0Pffsz6/zXOJlM e9BbIXmucDvbgwWsfhj7UDl5i9nD7dcAVmkNsfp4yK8HgwilIAqDBxAJ+Ks4v0zo3d70mRCfvFnS dbtQArdC71CQHqIpYAbVJK5cwRXB+ttEo52XunbxdCdKdQC/0yjSFUjUdSDRGyOhJEHnGvmQbtSO CFPnehcVU3z/CEVPEYwIzuUcBF/9ojdgEcwhpiM8ewb2gMJ6FwrUMpBVDaZUQD943LHPjnL6PAHW /jRnCIqS1dQ7pCwa4gIvIEbkUTx/UHoucOvP0hxwfs19/oJesUz6FBpbJL0zTpUovohHgc8f6KMS gegUQxB7mDWYvXFGXigkt0R4OLIaWVKzJ9BSTP9FPc/317/SjxlSqPNrxQXUxXrTa9Uc1uQv0pXB uaycv4tYLDC/DMtlBHkvkWWEn3r7RIzIn5QrVpPf1SyQlWeh3P8g1lFhVKGiyIh9TN1ksjFAnnSU Wov60YHgxfzoHOY7orBuPK2L5cXqlu07lXV/lm9VIlTFyodW2F4w+Jwam1S/Udkblf21qWwi+Mvq 7HTQPqnSftqB+vham8f/hdQ2QdBcb1NKFzR28pSG8uddBOWtff4LoIzSZRc/gyBycZtvHBFd8flm VYaQzfy6mV+/tvmVGQLLzrTskH7SOfdzDePHn32re2eheZhBteyMPJ52cPtjEn1WBxZFxkZtb9T2 V6e2iwNgaaVNDeanVdmfZQA/gcKu6JfF1HUR0ZLKejgZfzWLp7Sta5ZhapuN1LBnie/7D/1+J9nm FcLT/zG53JpK8qxIugEpLNPwojavtCqq0f/dE1GpNr8a/iSjdKU1KmnTsitU3/M8y9A/p4kzI2Fj 3mzMm6/NvJkJ/7KmzXwAP6lZ8/SD9vFNGlFfLGTOzJAsacpg+cFTWjNcfYwUbNTxRh1/jeoYZX8V bTx4BPu8Xhk/6Yh9Gl3M6YiFVfGg0jau1MSkM7yvZl05a+7z35XLSV120RN6Sb/71XRs3trn368Z pSt0K55VBWK/pr6dN/kxfULFivZUjFUq8A1lR8xLnhcKgaaInUtTchOwurQ4sl2T0npF6fg6mghI N3cx4NH1nqJWVQ/2iC1q/BxDFQmAQTHrUYi7gKDQ1FoUeg2K+nZggJ8VMVgrcwJH0YqcMMSh+hqi MJVlQp52Oq+P3h6fdg6P2ieXdRUYS1RAMHTSEKOdeOz2vMeppZY75qrEo292gUq4uDG22qxjXz0G yYsg/QJIXKcELBNXlZIAd4xXEBeoZg0MXoboZprPxLco1kip/RiisAzSBqLgrDhrEAwrClMAds8C tayhh5aheRGkGxLXQeIa5VxdJqIvJaUhFFugktXZuxTJDQetusxzxxQ78Jn5BSpZAzuWIflx2VGL Vrw44e6I88ov2UuT5BoWfk2szGIla+ilZUh+FKQNukdfkb0N7OBiHWvg7jIUPwrSBtxdfo2Uctft 1yoYY63MXYbgXhTGi3DiM5FZi/RxFhrq8guNVAYCN06uo/EC1ayBwcsQ/ShI6xmsLT+PZzOEN8QI u/Fj1PNtHdJl3DRF4odeQkJoNK9mdelYiuhHQdpAOla1H4DB+PhmrXSs1YRYiupHQdqAwys5ApsY ENpaJ4+l6G1kq2oreRWbOZS0tXrslqJ4EaRrIPExpqKlkNbq8uXcU3n343Hf+HqBOtbA28fw0i3J htrBtZKPDSb5pHPrBgtUsgb2PoZz6AsjcY0SoK/ksGnivNLX6q1Zit5FkH4mEhs6lHTxnnqj2VRf q82qP4bNuhTSumlEX95izaaROhtCX6utuhS9iyBdA4nLuHeaCekymGslYDWLethoqtPXalQvRfIi SL8AEtc51YkPsjQTy+VXIrDqbeQz19dq5S9F8KMgbdA5K3n0mix49bU685aidxGkGxLXQeI6JXT5 lShKaP2ug77WZehS5DbZdVgKce3svPxCFJk78fDhuFrtutZV3lIkPwrSOuYay59RIBNXM1f+UrXU kr7SPkRDR76x1uXfUiQ/ClKi076Ay+1ZY3d9NqLpAvcCxnf9r+ZCQNrW53/Vg9C5bIfmD0LsXvtx Qq4rfiW9y2n4ui99zGF3Z7VNAlwRpZf09kzxrYE3xydHX4RWKfNxZVGcvT701clioeXPTxj5KGYU 7+my+OpHMwyGIvYdNMUgvgTTDINliY9UN8Rg1/HhSxrW84YtMK5LgdRn99cZuMah1DE0AHmZ5KtR CsUWP38jpEDtsvqfRH/wAq/3lOF9P38fz5r8mHdOixXtmcs4/qvu11HYK7Qf2X2rKptFZFjGoZJy 7IvQrcUmrzRYot7NY78H9twGS97kRx8sWUV7VtWtWs4FaaqwuujlbKb0gpez6dKVd6t5l7OZ4ove 7aaLayvxTRcrEVAhpl7aRaKKaxUBF3vcK/VM8Zpb6dWFa66CVxcWG8CNCK+5Al5VWJdrbqBXFjar LiLWSoteQXiDdusY93L54lXLjpi7Z1ku3jxuZrnsMhE7GSxi9jVqgLVCA6y1NEAceKBRA8TS17T4 0u131tF+VazvmjQAiy/bgOI9xRUaUHFiKifiSzHNskattN6dRbJbZcGbvRj99Zh3WYO/jOVuSuwq BjxiiL+6Do6/qB5mfVYLdvE0iXFb86vq5Hmbv4xuntG7isbPI2E21/eWQb0VOZmEkVBMLGPNYmKZ fDGxzHoxsUy+mFhWBccsW+G0lisglr0OAbEcvoDYSoWA2BorIBmlDFRVQ6luBZlwJ8Ovpl9nzX3+ HZuTukDP6vxtDVZx6BWD3sZ+mOG4u/aSaw/weMlvI4x168fS+dnl8ceWIqGZ7CZ+N6B5aDvKeiXG FrHTsWolxsEtP05ZB/WsiAWOynbF29P3UlsK/O7EnTxId35yLeFBM1yI/LAvqXRpPLYuCDrr4DxV 2FVNppOQrEWkaCDF/hBdyddu2A8AOV1w3Ux1BEx16pmqynymqnKRqbeR32dybfZcCD4tQsOgDbDG ZgJCrsZQZTxIVddMg8siVTZ1oeyoMjrI6CFIFpcUkCJr622mgq4xDqmK7NQ2U1G4CllVVLG2UhVN Z5rZDW56YcI21Fyv2Kqg/4q7L6jEY8YHsCj4o635peNw7q/4deT64fZembpfc8ZtE/cEbiN5fenF wJ9Ar01jD9En16B2c1QvyzheHLm962Jxv++FiT/wQXNDSaA7miSQHIXBA/xDT3opCmJJIJYZxX4i 4aVpF9jghy1OrWPI8lJOSV0PEHhl/puLBg8HyXI24f434f7XF+4fZUZ6Y1mdw/fv3v3SeXdwfEoq IumdTm8cTGP8/5aEX7qjK33T/gaBUhwSkpUwOF68lP6Vz+DK99J/8goBcgvHuvTi5da/toDWFy/y ES59+1KSXwK6rJj8PcnHCQKm/xnYSxpEkr6nfv+HGYmyyNpQFYdV0jNTg3gQpcALhwllG6oqBpJZ p8ZW6YB7dRpb5bqroa5gVkL+rEqbEPgrMhC4t6zWJkhW09oExWJamxRpoLVVTV5Ua4NNuKjWzrWi QEGn43OunM/aPx0RHUFr58wVzo73D36oqQXYOz9E0ALg59YML9BAfjn0EqQrGifSC+WVlP7v9P3J ySvQC7mMgd7ApJc1qmDNQ7fZSJgNvrGbHnqBJatkoI75dd62bWkwiUaopWdLRmkcAT+8VCUJpE9m 0rVaW1bV+HawamhzLZka5NK3NATuD5eWvd2HBPTlpO8RjQKDsusPsTPdkC7srNdJAizg2+SaXOsk ARj+kkfT1ry20jRBRXr92krT+Wsr3ahYdOgW695wQ+ng9PJYau8gXDQZYUYPL69RBQ19zcsQQ0C+ odevng2DL9+GKXZJqIZlME1HbVKEMFFk1tlGE2WNQ6eJ8lXTRlNR+GXRKy1qIwkUOXfUwShFNcK2 05m1M5rVvkCDd04QBExs/GuejQkFXuwE+ali+LMfwD9hbwrzZgx/jaQSqxwBqxwZxKG1myOm8xS+ GDhaQQx0Okt3GCEIonBIg6D7YZ1S4OBpcx6Z+K5qjRQ4toAtjiGWAsexOVLANlRTZw19NmIANHF5 panogeaLAeRxNYmmybpADDRNYdUgcqfMIqKf1ygLGlHsPFpRG1bLAsBY/LIVO3eaZsoCWSi31py1 9vkIhClgGInAIhAIEliBV8YsOO1tOguPA5YFoh9NGd+8ZqHn9ulMRM1CH+LMRMR1ERqGBeq2if33 PSxb4rR/R+4DNMUNh2QJ5QJ6MHY9aHjgubFXgfzFyRwr7mUhAt4iqrBmguVMqwLjVST1/dhFfGQp l2W8Iu3Y+RBGO9iQnbRKeqkFjNa4vWiho7ZmqFgyX41YaG+LhgohnT9UynKgyzM5eC6DhRYlpBuj 7NDS5Dja40kTjXwd0kRjXEGaoLu40gTphkiPQB7XOtdl1RboEV3WTM4aCMXE7fW8MTB15x1pMKyB PLzsgCzyMK6mF/Z8WiB1svMikFadbL9wa4qnY+RxTDRUJOF1tFYQMYXz1VYmsD1K6iLp6t35jCdQ WFIYvazL/D1oSDdWxizguiXectXJI2MzblxHd1ISAY8T3GPsRiAeMIZIVjRNxtMkXUwPLYtGQpZ3 llVQ7TNKB+zMBNB8OpX6tRvAcE0WXbHkjAKOUrltpDQGTZTGBQAQJTf2enHKjAzzLvTdDv53HN15 k3Fvxx2PA2+n707uMH6CvKu1lF1SbKudE94n27kwjFpYWtudtUjaQRfjwL/fB+zwwwtx8O4EoE2m oA/i/QE2dceHdWffn+z/5V8p9H9242t34u1i+tbVNbaG+BgDdDyEQ1DEB0iU1I5G0Jfe5BVovl5L ettuz7aUFcVQXqF7kmgaIpB5FjRAUmVZlXVVll5AjZkqe7m1EA+AdIXi+uD8uC3t/HPqg9Tt9Kej MdZOQeT9mBECfbx76052k9F4dxe0w8HPl3fXrXgLd8rfAGNqCYYffAJfbv0J3UTE19h9yLbea9G1 tiQXZMSdgCoej3ssfQdX+kc5bgmIloJ+sWj/IXRHPjM5Br1JogAC8kfXG/oh/hDL9CyrSYcsBr0L skr+x29i9RDaCQYZ/fDnUMVpmmi84PIhTryR9O8tqffddzCbJRo1utXiabOdWyaPXZi+AR0+cUMJ JCE9NcFODyquZTfK4qtUFoNb57e/v3m+yuJ4+rfb14OWgOg/hLKYNfFxlIUuF/ztz5QdC7c8bTPd TvPzOyP/EOzdGfsFsULFTWju+uFu0N+TRiBIPirC+bWfmOxjP4y6USB1Tj8eTIbZJVmkMGPIHBqB MyhcCcZeutB80ekcHlwdvOp0+m7ivlwTgoWovm1U6e2qVNcjaEp1p4M7wHgeva7iOeQK1C+ApHEL +g9Bv4Pehk4QRTfTcYmG8cS/dROveL+fJorFwNB2dfTxCmhLoHy5getHvljDMadDrLUlSZsjWH+z F8DduNVx4k6SxekhxdbawmYYm7bLC2/9SRTWDaAMbIUh2BRDQ8JJP8fJtNuBAmicd669YOxNFuWn CM8au2zpKhqygi+ZNA0Li+EyxXN6e264nUhoKgBT0KWJq7m9+RzNWD/GgueEdF3XGpwT+txnc6oP 2ui6zS53YRE0epAIgiQi7rr0kkDtMphcS34WBuSXaTfSNiPNWe7mM6Rzji/QEBp31043HOqoZUhv qZBjESIfCJovOyMXVvTEFwFgI6Y03sNr7L01Ve4OkU7eeavx3pInunhlrSfYP+0NYDSmRH09Ukkp 2PezEATpFAC6sTOIoq47oXvDVhZVraahNlGtu99KZ7feZOJDjhs+YJerEjmKh9MfYE4ickoY9JiL RxTxjBU5LdqSpG93c81c1MBF5ZtqU6jjg0c2tjCOjtT1em56JjaRRv7wGv51k961lFx77B0ol9CD urs79WHqDKH6PgKGZFPPnQynGIO6QOddNA2AmYkfBHjyNXhI6SQVp4wFnf79555RCpRUzy2bYfgU k8N8eDFK0OacZGEguOdYdGt2TX7Tb0+vPjswuDp0f8yiDDRWoJbSyDb9yhQoYe0zUaFzWqqV6GYw PoUStfiBPCCdc0idgeCfPrCKB0MDbAssSGPvFbkkM4l70QT+BrGauIUUCoOjcI+wgGGNw4AcZRlO PE8i3oyEJHKORzmO+Ci2Icvcsyu8KrLzQ7hDFXj3NBZLq6jCtgRV1B+PMWQ8QEuWEuVDLIMmh1gM RebOjpCur4yZO3saiiI+EWzo1LnwGTe++26JY0mGrokP4hi6LgtqasB3HYUaYXmHhxqdHjJ0g894 HW+ir4qaz3niwxHwwzQti1nT3o9uRgMaBsdsejOPKLOPinJhkvm6DGvJhTMEddCWXDpVcBdNyN9u gCqTjmphybr22V0pDNctGZ0Q11ACxIh407Zz0relMEpSvj1m2DngirmgHQRE6wvd5cub9MPnthCI yfLtGNr6Iv3zZSYp0gtV+lbK79lCoZd1JoRFjgjy79WCFKvsPSRSDQWkKM/uggLQxPUbWSTUQ9WM DRBcr5FFTh0K1IelGWwsDFTYMQPkPIGttiCfdP71O0ivsWwAgmvZWLoiPg3L4VPvuu9PNmyqY5N3 Px4pGzbVsWnQC5Ngw6ZaNuGumbfhUy2fksk0xA3CDavqWDX0kt5df8OnBnwaTob+hlNNODW+m244 1YhTGz414NP1wzhKNmyqY5Mfu3HP9zeMqmdUSIdH2bCJx6YgGirjDZvq2DRy0Qe7WQvXM+pm4A+i DZ/q+DSOxt5GPdWzaZp44e2GT3V8mjDxiTZc4nEp9jbS1IhPyaQXBRtfXQNGuZth10ScxvhEzIZT tZwq3e3c8InHJ/Lg0IZNdWyahpsZj8cp3WAvSbi9KKbPcRiy8uzYZMjckDeQzon3SUPwwzxa5FXD BdgU++GGTfVsStwNm+rZFIdjXLcMNpyq5VQy6U/HGz414FOIR3V7ow2zapl1uxl/fFYZ1KtC+flb YiJg+MX8oQS6zCwEy3qi3AJC/lE3w6yNe20ZFvcAr2XY4rjXluHwTnuTGV/YalNdbzB3QMg350yt NiAgwPClxCy+hMa22jR5Z63JBC5u9ex5vnW12uH3l+nURjQGGO6Jaos65My22lK5r+tl+kDYcMtY s5BbBl/ILaNeyC2TzzTLqhByi3ulIZ1ehc22FX29zbYVfp/ZqJVqmm2r3CCslq2Jb3JYNhWyvdDs fLYUt33NkdwBIf/wr10fyR1g+OJiV0RytxyFd1HmtlbYnTXHLbccfhhuy6mPWw4wfIlxKuKWW07p EcAgezoSoBLXD7NnKkKvR82atiw/OxeBLfPfB4T0GheBTV585JUsPteKgRTgxz+nPiMHtmyzz1dx uDgEqYripPtAAlIViyuK9ex4qahcq8gmEYAreamo3LDwtmIbTXipOOyVBQ4v7/uTTvqwG1VWndka z4eRKt9cAR3NMVcYCK6xYquO1oSRmsy+DdvpxF4yGE97dzTgM7mOVHt9Wkj/oheHgDdGg4tDu99K 2YXS7GJUkoUs8kiErGlXGrm9SRST65TX0dgbTIPgQRp4d/NLy/ErcoHo7trvXWPMIsKTwO8ladgd cvtn3i68MSx1vSC6y69gz64uxbE3Ic+HfU23umnOpGkvvh28JL8+9yUuYNIVMIB+cTmVjzh7Ug/P oGdPBcSZDPiJ5OMlW+RCShd2VHDnPsREZFO5ODo9u/zlEjhxGY28Ag4wQWCVmUxdFDScSPoERQxQ UCN5NdydkHulBE2nk7MfFMVkBPKRhidEkYVKfTeeCYWUj7cXqWwXRttL6d//5mQXAKBnohtPgnkt fTFzAINxnv397CW7yptstia+yWbrpTeZ8yuWPXKljQbWnt2NNqCJa9Taui58cgfy+DOAXmHS2brJ XoXNOVW+NmKTAGHPjVMO34zTcakr4hR/iWsbFa+n20bp9fScU0FEGxaG/vmDn7FsMnTuSscmL7sJ 2CR40c02TPHK0DZKj/bkbOLt2tuG8+yeN7JNfpwASBc+bwR5fDvWrHjcxrZKaioeeqNRhwYyP7// VPrDBPqoNRu5PbDoa9+2pTaJufNUJmPapo25SJuLc65sTMWnNBVTvgvMxCyTZyKmWU3NQ0v8gDjk sRE4Dq5OOvfepBu4EtEbbhK4tK62nyaiKalY+nr0Mc1ivo1i14U2tW1+aFPb1sXP7kJm6bRcqhEI pQPL6pZkwHoS+zereiYNX6cw2Hy7nrjsq4XB5vvQbEdsijm6xpqtH6l8Uy8UDvKYx8VgP5D4KpvH qfSs9ylstvz5l5x52Rn1kAx/sx0BtHKXoo6t1ARXAQjueHYcg+W10NvtOM7n5xTLEcfhcUSVZbma IwjB4wiki+OEqbKis6uE8hYLQDmff5lAMwpp4nkkML36mIUqqzJv6Qnp4hU6ZJa2pybeKLr1KCBN eW4+DKBJ5ek6TK/WdQjB03WQrglPq6qyLrMbUPH1yKUR6/pz22UCmrj+CEyv3mVCCN7qHNKLjw+z bDJ09j3q457XToce2Myn01E3fTFhJzhuH9FFLf2RuFdS2hQ7gY5a25HlqmHxnGGQbnPODjAQvJMD kO4Iz8fA+LVYruZmRtIL2gSwRZ2cVhUSt3EWXq8WWjdEFdwISlgGB78AWLWLSqbQlUiR3dJ2SbRG v4c/W9f4xm7XD/zkgUbirPWYk6pouNFKBeSro+xpAvVhU+3FnCfIYnuhQH1x0vejLE6f9OPBz0cd WOJ2rn45P7rs/Agr8jngQ7xLfCYEOF1GUmUurw6uykXwUhZT4vLqsN358ejg8OjikgJPYOB1CTCV CESnGHAxC1l5nVeHJ8evSY18HFmNLKlXF8enb1NCB9J/FYmR/vrXFObd0buzi18Y1COYDycPFOpi vdjRXNaQ+lhmEnAuK49Przjc98OkwPwSI6BQmRFQpooR70+PoSRdzTT0oSBFVp5VNyZ+oMeUogk8 CJhnLaIFYNjEXtjzmDGbTxJHi41+Bov8TEe+psmLjnwwzhYa+Qt2aPHpbrZDTdZ2rMNNF7fEslI7 Yzy/mWIzQ2xmiM0MURgLa5wZnseM8BXMBI8xA6xR8z+dyp8rWJkmXa67A4EwXBcOPQTYNV7lGHhk 4de4PgK650v01nV9VZ+zyHRD2Ok3lBFxI5QAErx+YQnIEimvM1OuQkh0p9IuKJH+VLpDNxe2DnRj Yx1srIPHtg5KI4KeanRbPC/otlA/llUEV1mS023NleVCqoGpqNKY+GxqwZAXNil0ewWToqa3DUVs WBha5exSwkwX1ivEqGam+QJnmM3MsplZNjNLPhLWN6N8ITPJH34GWf/Msa4ZI1vfflFTxpzmzZyx mTO+6jljPhTWMmkUtMGznjWeXgM89bQh6tgV5o05yrUsNZ7XjGHyfZ26Ve/r1C2+r5MaQyV3X4Xl 9dlHj8E/RkcLD9uiOqujSmxYXHbJs1q6VqgqjlpBTRkD+xBDDQISdqMUrsOPU0IE0TqgmLnWOCWI kHtqVHGsujglCMM9N6o4tvjcqMp/0JdwT9RqVVadtbYaTyjyKId0ztFGutUAwx3Lqlzhy1dlSl7y Vj9EU+navfWk46OjI8kydGkQRORJ3Z1xRF5MnvjJ9chL/B6NzRafN1XlUvCJ15eHUugl2Y1HClgR h0+CTK14Zg3sgd/G3hBP9916k9iPQumHfcnsbhXH4W9p+db1Hp7Dnk1y0KEekWwsFQ3SC2SMeTaf dfZwo2ZWllwt8mNyqwc7OMeBv0GP3frRNJbm6GlyUoIBpYVnmaezm3VoJL3KHtL9FZ8q7STbopKq tWxJDO+0XEkM17VUSUdevqS6bElFXCe+3Swup9SUo6QRNbofBN7QDbK7bfBHqi+IULySRj6xmKRf v9+WXBi7E+lXkOntx7S8YKapGPaKyd4pwNZ3+qBVJtFDBwmConF6XBez6NJPc8sA6607nrvY6V2g nDuroCavPr0LENw5BVkpZrNauiZDri0Srv5OQ+LAenyW/r4wx1STe2oZ0s06jvFncFWtmiRU6q4h qHZowhj+Kmh2pSW3GBrxgsTzG4GaIrxOh5nsNRVoZqcHfZN4nTuYXj0MwjTtJam0jJn5UTOe5P4K sh6lZr2jUDO4KwdIr7noomom10JXNXHQQVUl0c1nrJ6Me7kfiL8QU3VFWa9Vpyv89uoKp72MVadz Y4VhuvB6HmRSeqfYYt4CS9V1efWzJICFe2tE1U3x/QZVt1mjsEAtA1nVYKd0lwnQ3PcnDBJDXrPB bnDD4mF6vcFucAPjQXrF+kw1yjcvDy+keDoeRxN6rJBYJUI0JnuvZPi7B8YrZ2oyZsvvZzY1Gdy4 NDiV1lzFUUloEl5JpUJUTYrzvxNTUaBBTH2tgVoRId/6MPW6QK0AY/Bue+MEXjEPm6ZebixXeZiW sgblYfKvVYENUbFktxR2LKSE0kDiUNOQSfUpmBu/M8tIpaW0NLqI8dziICJNfE1ClmvcEDyYxx8D llVh0Fo2z0lCmJapIFjQe/0Yg2l0sbNHY3T0Mjh0keNUtalw0MRH8He108UKfs46hWio7u8qXc55 kjCLUK3UxB5i+8d2+FMjuWNfqakc7ssskF5xoFR1tOKk2q1UVSQq7jpVlcONq4bp9caOw7+yCukV c79DrWW7VbrKsdZh6JC4vjwqKy5yaiR+LiXZ3bKyAihxQzVZZ1GMYb3QwShHfjiIsoUCJNGlrCfR V1ivlA2RxUcIUMnVYJpsV0dyRQiuvGlyxcyhKUpxmYm0iwYILOLWGocaEHKjr2B6XRxqhOFOk5qi i5W2phhyubG88QGQ1urjQ1P4MwuseMWLNI14ZkrCzQwPVa5qZqlPd5+4Y3HXj9p8LRDxRBuuBelq uuEKjFA2Ry42Ry7Wf+SiIP4/iNVVGNVoq90nUFkGe3Lqcwzdmd5sPnQNdaGhK+6Rom5me4Srmnfr 9DODRaU27fKlQ+C5YykGfob9NKpeQjygfcnt9aJJH0FhKXF+dnn8kcZmPonBT6yapY0a4iPnTIQq nrrgL8s01eLq77z3vXsfuUOiCqKenMbNhUXVm0TZpBV9rhlnaRiSlk4pTAdcfCRSZRqtUfrXliRl bu1kJH2bjDAmIaLsJFIv+R6jFPbw54u/9pKX35NfwAn4Z0d6Af/+b8mUSTIU3peGIwrUH7xIRjs/ JKMOyJO0D0x/Sdj1Qnn5vYT6L/2FCP5Ds9yusNs1mXWUxV7iY8UTGk5/Ei/ZagKpcZ8xgXSjxmMG EHybThMHN4bM8nMTY5pr5PnQdGd1HmqWhSmevillaqVtFHfsTRCEhjMLC6uBi7NhMZs4scjmC6JJ hyYGsyEjDIbEn6Ud7if9+c+YeTEN88dc5sVaWaa45NYViU6K8w0MVLJzFfZh9HYfpAsal6S0zJb8 KotdCsBb5AoM0ZQAjbFPD6ZJhGUktWVoLUk6Dm/zQwkwW40w/iiREywMo6V9dvrm+G0Ht7MvMXTp vjRPzG0bKvHk+PSnEmT77N27g9PDyzTxLyznpK0trN7tgk6KeqbdGkzc30dJ2AKKtrYo0D0SznLW Be/cG6/QiWIg5F4lkDsY7TYCBAqbA14no2BB6NhzJ73r5oWgy6Zuw0q8pCHtOWAtbxHwwgtv/UkU VgKO9GY1x9cwvTcEnTRsDQJieM3m0DDGJu6i4Pf9yaJF0LfTvEx+BGXhAhcjN7meGWEN4DtAXvNq smjKIAioQohyWrzwwgXAPPZ2D48u2xfH51fHZ6eLFVy4uh5OdkvVl5ZcssKFhDwv6vXdpSjFcktV thSVwT/jpajEcktVthSVGKo76i9HaV526UqXozjqT7zhcgSnRZetcjlyb5cTViy3VGVLURkGy4kA lluqsqWohAUdwi9eME688WAaLtXEvOzilY7R1FyOr3nZpStdir9JL0hulqI3LblkhcvRGkVLymxa cvEKl6xtuaoW4gk6FhaAjvrTYBHZygt8VJTFC7n/nC6gyPJSwzAaLTDO82LpqyPeAuZIXjJwx25v AQnOy90OonCRLg7RVl0UHLLDvhtE4QIsiXsTf7wIZXkBWM2ew3q4Mfzx6eXVwclJY/iLo3dnPzdH fzEPptsAuA+QtwuA+2DN3zeHxwmoMfTljyfHr5tD99WLfmNofMumOTRxDTWGHlhWLew09O+biRaa +Q2lMAU9GnW9Pvq8Fyp07+I7NgtVdAo/bhuOqMo5w8FTqNyVZgbHCrBCzrx6915vmhZJgPqd69xF RfkPdadwgnHrAu/ahNGdNIPop/4+/jMb6OO6jKaTnif1/YnXS6LJw540+1pb6CGD2oMg9ZHRQHMX LPq68nNMkwKC9EOHb+blRcDvvhOBDiFrDvgmmiQT8vhUCXhoWTNAgMQnJrKTVWzl6G2VpLc4XfBB wgjyr3rB7tUNFyBFcJE7kMsgCIAQUmp9kv6igTIUkhtLburh6edPMO3NUfC8oJlztO3CCJVu3YmP TkKhz5R4S91ep3fbIeN/X9TrBZgOeVipBrLX6fpD3Ld0w32kNU/Ne6YzDKdMBkhNMeX+XgTshbed dhtf6tynU27dYOpRaW9ODt5eliDT1DL0+bGgwCyDU+ZcUORcXIIDzIH7+JEHmqbyoPl05Om8EsL2 FrJ45TjwZbg3aqmLMKkMZ1klOEgqw3FJfSOg8o2obW/ELTs55JbIk0vw+JSaQMSKWfxy/OYUs/jl BERSeaKSgkI8+J+OysCQVoK86Lw+uGr/eImnGJgCxSxOufOD86OLy+O/c8rNs3jlLo5Pr9rvSo0p 5JRKEbtJ0FVUnqjkx48CvpfyqzBUFBaV44sJlScoWUlwDbUiUnl0XrVPrn4S6kEmV1AacAtKkpxS qcI8xBYrZpXK4etO/GKFnFKpxJ0MPUE5Ko8uee959zNYsIBF0xlm9aej0UMHF937IazJCjlgvQ3R QtjfDnDClXpu7L0il2gncS+awN9kY6SQsp2XBoMh3t9O32VT8E22P8ADbbPGTcNe4TFv4Foxw+3h +aAij9PUKL4uJeJD3G4H78qXC8R+WC4AK+dSYu8a7NxSYvpID5vs3Y9HCps46IVJUEoksSFKqckE /uOWM0AQe3d9TupwMvR56fPHzjiZ47sptxAn9fphHJWa6cdu3PP9cnJImYQkMYiGyphNRD+FNylx dXQz8AcRmzqOxl4J7XiawBhlU9PXuEqpflhqAkgXp/zsnEopg7zbyIgiedOqBBmOsb5BKT3hwCaT XhSUZAOS+9MSzyA1RA3RG/GyyLvXpXQyrthUhCyNh2nI58gtpz0Y5qKDV4VLw66Qw4yvQg4zyOY5 ecQUQSYtXPOcSgpLvKSyOAyd5wubfr+/nf0XMqQ//Qmy7jvZIj7e50TSIQCzJx2LEJCYq730KCXo vbscVwfjKHW0Tha6FX92rucyKC7QHPCmHq5DdRYH5IaisRbjTbOKb3j1upOxCyAwK3MyyeUQXgb6 KcIk/w8PgMeufgCKmwftBQMOOKizMOKBE/XPzcjiw5DwMByMMPvhPJNMIh55w8mYh9T3PM8ydE4B zBmMeRnZoWceOmI5eLyc9Jw2Lwe6p8/tB8ggfedz2Uou5ojSs0yW9PFdn1ckNz86136cCKicwcyB OUBjkGgRbzDzvj/hZcUJmEZDQU6Pm+rzRTM9T8rPwZPT4hwuzTAjdMbuxB2JMmMvALtGmBv1bviD j+TCFCfKIwdWK/KE1ArZj5nTJEYTR5R95/pcgpi5MktNT+Xz4MuKBayrGi/ZfNVRA4i4j9tHHc7T j4UaEYq81dyZPyTOZHd/Vzvs1U8GBBRdP2DMKUzP3oPOzRw6k4S54ca6YQBH6SqHTYxLadlygAc+ H+35HT0WAGReEPaDgZyP8KADWizour0bkggmvcvy9vcOucxfSmVIjLq/4covV0NjsGM7hz8fn1/u FxZaiXflfSTncnk9vwONx4lot3/rj+MiordHVx8O99OCd/1izt8Ofj5o78+O+/7m3rq9Yv7JwdXR xyVICICF90VE6Ak6Pj1cCtnIvfHSHbISwjdnnfY7aBqsJhFNCjmguHh+8PboYgYRgHTRuedHF3iA dj89iFzMQn/Hcs0f9wclDgC6pZGxqI4uTuadNvYmQTH3ovP64uzDJTZ6XhcCwhQZ99yxRwO/P/37 8TlhYo5wGv7uj2kgFoQBuGqfdNJTyPvcR06LoEvxgGEAuoeY6m64tX1899O7N0W7GGu6H92MBkUo P9182t/OpSRLkHZ6uRGNlzg6Bxf77oRK+PDT/tC9uymmtc/P97fTS1BU4dQLD1nffcdmvbGs/aFl FZPmnsl9PGZfyPnloN3e3+76cRRKOw8UHvwz6UA2VM9J//hxHyovZ1wcnJ4cv96fuCFwspyNN+DO 93HuHxcze7CyLyiwPI3YIVTa/X0ZEL1U3MTb/Z3bYhq0pJNM3D4J2+cGc0ON5OJ4T/9BF9scXXq8 e+ZM2Ub/mDTx/jkFS72/TQPRPo1KUJzg0GdTCYSWW2ooieB8nBDQOt7X6aQggkKctE4/mnYDb9/m ZJEyeQbaNJ1ucAMrg04y5xVJpn0VJImU5aTl9fGyeGXGfr9TQh77Q+yw28jv08kYJbAAnEWczJ1q xBYPEsyZ+T57nXSyZpIjIKaQ3vfG6L3skGMGnfRw5/42bpSDiAz9nvTO7V3vnEl97GkfJ+4HvIVx 4/WZ3dLtDOG8aKc3AlQz7UduieyccOBwS5/8znQcaCb4f+qGbPUfcHylZYZB1HUDMCZHXViFJRG0 kRicbr9PDKDtGOjZgRHuSduftrfj3f/Zkz69+O//kf7x7aeX0l92Jelfn775pHz65pX0AjCOk8lL Sf7Pq90xQhdK/ffr9uHR24vLq38Uis/+Ini++aQWsXz66yc1R7QtpBYdGRwiW1LrW0DfIrjT6G8S GkXSJ+V7GmXQB5MJFqp9WK66w/2dSZaemh2FqSboF3NO3xX6IRxJO+McYa6Aem6YOfTTXi1ISA4C 62mEgEXjPpMz9nvo/R6E0Q6egohCFjsAFPy+dF58Df3LYsS1CyDlpmaYZgKf594F+zsfglfF1GE4 BZbNQXEVQvfK2B97vB759r+lP/0DenwmCPO/oJcwE///7acXnU8vAaxzsPN3d+f3f+R/yDtOKimf FOmT+kmTPml0R6YrP+ia2MMFICyL9/e2JpjTjfudeUhZwjCSnjq6yXgv8HKelTrruFkBsIKXnjsq 2czcpwEd01ORe8XULMhotgAr5oxn699iKswxv43GnXEU+/elzN8ZTOgV6ViGPk+ZCehccVHpIzYJ TzNwYSGDBca5EywnmJ86810dDgwXIcnoEcWa+ZIFeeQ/gXfPwORmd+eWbS7app1bY55KpAUZ2MHb xtll43l2OkVEvZsAlpLpVJFmwKxKoJgDKdkRlfkdV86hFXJe5c9pAFnp/KD9EywIOqcH746kby6+ KWVcHVykeZNy3s+4w3x2Kn1DbgCW89NYAYBWEgC8fv/24uj87OIK0O90p8P4/17sAJ9+AyOlFU2G pQIUhaLawVSEdcqbs4t30jcCj0ARuH3+fgZXTP/56PTw7EL6hhQtZpxdSt9wML0P/XtJmf2kAjHM k9mQFLysNPJEKSeLD1FOTwNAsOl50Ac+PKfqeaQGTtUkIgObnodcYNMPT960T8vJQP47Ttpp+/3F 5VGJSZBzeMJJvACenhyfHtXz+ur43VHnw/HVjynD4VeJ0OOLI17DEP7DwTEn5+Di/AA4dcTJErQa Eq9OyslvL845HDprH5wcldOhvkNO10MyIeWYU+35B07H5Lzr/Agdx5WOGcQctLEAIdfODy4O3gnE +ujkqC1g9uVZ+yceTyuGQ9al4hwBhe+vLlGhNZfmo4uL0zPuoDi44Iw70XgkcSKACVd/e3deyLs4 uro8fosDTyJLgzw9X7VIuMCYSzrw6eTotHMlZZNBnvHh7OLwsvP6+C1oreOD0+LgOP770dkbHN2S PkvE4aypAH91WQY9OQOlrfNS0yybm3V49v71yVEhE0+gvXl/2n6Bhvwr5PlLCf+E+UfqlKA6XLAO M5YA+P0pDvP22UV5NBMK8N73+cnRx2K7yMGbo48wzbTi6Bu61MEJjrrSOG+3jy5LOqn9I2iMknx8 PH+ncEd9KfH49PiqRPabqwto/0E54+3RVfvDISf17cXbY176+Yf33HRO6o+/nJ9dlWaAy4PL9vFx OfmUkqhMVb1VztnEdwdXP8JwKSX/9Ob4zVl5QJwfldCev786Ov25pJVQetlxdsSDhNHXPjspcR51 CAf0nDcpgJK4OipNVESjlFUGn4qD9tlleeq4PD4tJ14dlBMvT4mz6w2H4sP3JaZDKojP5VH7XSnr ZxGmw6P2CZ/KNIdHaprDo5fkVFbFpzzPEpFP8oVtAJX3E2raNhnBolz+mMtzQYpFWSLxwFPvrGzg Mbtmg507lkg7jy/5JbJMuhi+fYKrKRb49eUhWgVZG0qSQmbZkhQDc48uoFRRY74/R7Mc7a2P70qj 6W/nRyXc5+Xq/g6lSwTyEs/bF5z5GFP5k+jJ0cE5CMwZBvcoa4Vj7LWiDkLf8dmb4xOaI3OPsvRN MIbVTTFUEUbjkeRNcJWlg6uUbyMtG22Fg2nTKyv0Cn0rdZVeoTH9r823+Tbf5tt8m2/zbb7Nt/k2 3+bbfJtv822+zbf5Nt/m23ybb/Ntvs23+Tbf5tt8m2/zbb7Nt/k23+bbfJtv822+zbf5vvDv/wOU PteKAJgDAA= --Apple-Mail-7--233789088 Content-Transfer-Encoding: 7bit Content-Type: text/plain; delsp=yes; charset=US-ASCII; format=flowed ==Jan de Leeuw; Professor and Chair, UCLA Department of Statistics; Editor: Journal of Multivariate Analysis, Journal of Statistical Software US mail: 9432 Boelter Hall, Box 951554, Los Angeles, CA 90095-1554 phone (310)-825-9550; fax (310)-206-5658; email: deleeuw@stat.ucla.edu homepage: http://gifi.stat.ucla.edu ------------------------------------------------------------------------ ------------------------- No matter where you go, there you are. --- Buckaroo Banzai http://gifi.stat.ucla.edu/sounds/nomatter.au ------------------------------------------------------------------------ ------------------------- --Apple-Mail-7--233789088-- -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- r-devel mailing list -- Read http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html Send "info", "help", or "[un]subscribe" (in the "body", not the subject !) To: r-devel-request@stat.math.ethz.ch _._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._
>>>>> Jan de Leeuw writes:> Hi Kurt> I currently have on my Mac gcc 2.95.2, 3.1, and 3.3 and the > corresponding g77 versions as well. R builds fine with > the 2.95.2 combo, it also builds fine with gcc 2.95.2 and > g77 3.1. But using gcc 3.1 or gcc 3.3 gives the familiar > problem that I mentioned before (although the 3.1 > combination does build scilab and octave fine).> checking for dummy main to link with Fortran 77 libraries... unknown > configure: error: linking to Fortran libraries from C fails> I include the config.log for the build with gcc 2.95.2 and g77 3.1 > (which works) and for the one with gcc 3.1 and g77 3.1, which fails.> Is that configure test, the one that fails, really needed ?> By the way, gcc 3.1 with f2c also works -- but that fails to build > some packages such as splancs and subselect.> More by the way, gcc 3.1 and 2.95.2 come with OS X, g77 3.1 > and 2.95.2 come from fink, gcc 3.3 and g77 3.3 come from Apple's > CVS. f2c also from fink.Jan, Thanks for the update, and the additional info. The test that fails is AC_F77_DUMMY_MAIN, one of the standard Autoconf tests, required in particular to determine the kind of Fortran name mangling. So yes, it is necessary. The failure seems to come from the fact that when trying to determine the dummy main to link with the Fortran 77 libraries, all efforts fail along the lines of configure:14562: gcc -o conftest -g -O2 -I/sw/include -I/usr/local/include -L/sw /lib -L/usr/local/lib conftest.c -lreadline -ldl -lncurses -lm -lcrtbegin.o -L /sw/lib -L/usr/local/lib -L/sw/lib/gcc-lib/powerpc-apple-darwin6.0/3.1 -L/sw/lib /gcc-lib/powerpc-apple-darwin6.0/3.1/../../.. -lreadline -ldl -lncurses -lm -lfr tbegin -lg2c -lSystem >&5 ld: multiple definitions of symbol ___darwin_gcc3_preregister_frame_info /sw/lib/gcc-lib/powerpc-apple-darwin6.0/3.1/crtbegin.o definition of ___darwin_g cc3_preregister_frame_info in section (__TEXT,__text) /sw/lib/gcc-lib/powerpc-apple-darwin6.0/3.1/crtbegin.o definition of ___darwin_g cc3_preregister_frame_info in section (__TEXT,__text)>From this I cannot see where the offending symbol is defined as well,but I think we already looked into this and found frtbegin to be the bad guy? Best -k -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- r-devel mailing list -- Read http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html Send "info", "help", or "[un]subscribe" (in the "body", not the subject !) To: r-devel-request@stat.math.ethz.ch _._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._