Alexandre Courbot
2025-Oct-09 12:37 UTC
[RFC PATCH v2 0/3] rust: bounded integer types and use in register macro
Second revision, much more complete, of the RFC/PoC for an idea I
submitted a bit earlier [1] regarding how to handle truncated bits in
the register/bitfield macro field setters.
Currently, the register macro allows to define fields that are shorter
than the primitive type used to set them. For instance, in the following
register:
register!(NV_PFALCON_FALCON_DMATRFBASE1 @ PFalconBase[0x00000128] {
8:0 base as u16;
});
The `base` field is 9 bits long, but is set using the following
setter method:
fn set_base(self, value: u16) -> Self
which discards bits of `value` higher than 9 without any error or
warning if some happen to be set. And so you happily start a DMA
transfer from the wrong base address...
While this behavior is not UB, this can also be a source of bugs.
Several ideas have been submitted to not let these unnoticed, including
making the register setters fallible, or panicking or printing a warning
whenever extra bits are discarded. These solutions are either too
risky (like panicking), or add extra code and checks on what can be a
critical path as registers are commonly accessed in interrupt handlers.
In pure Rust fashion, we would prefer to guarantee at compile-time,
whenever possible, that no bits are discarded when setting register
fields with a non-round number of bits.
This PoC proposes a possible solution for that. It introduces a new
`BoundedInt` type that wraps a primitive integer type and, using a const
generic parameter, limits the number of bits that can actually be used
within it. This is similar in spirit to `NonZero` or `Alignment` in that
it provides a static guarantee that the value it contains is limited to
a certain subset of the possible values of its primitive type.
Instances of `BoundedInt` can be constructed infallibly when the
compiler is able to guarantee that the passed value fits within the
allowed bounds, or fallibly using `try_new(primitive)`.
This type is then used by the register/bitfield macros to let the fields
getter and (more importantly) setter methods work with the exact number
of bits they can handle. For instance, the above method would become:
fn set_base(self, value: impl Into<BoundedInt<u32, 9>>) -> Self
which guarantees that no bits are ever discarded by the setter, since
the type of `value` carries an invariant that only the 9 lowest bits can
ever be set.
It is then the responsibility of the caller to build the adequate
`BoundedInt`, which very often can be done infallibly, but all the cases
that require a fallible operation are cases that the caller should have
checked anyway (lest you beam out the wrong memory region on your DMA
transfer!).
Compared to v1, this version of the RFC is much more complete. It
notably provides many `From` implementations for conversions from/to
bounded types that cannot fail, which removes a lot of the friction one
would expect when introducing new integer types.
Another side effect of this is that the bitfield definitions are
considerably simplified, since their type can now be automatically
inferred. This means that
8:0 base as u16;
could become simply
8:0 base;
And the getter/setters would work with a `BoundedInt<u32, 9>` (provided
the bitfield type is backed by a `u32`).
For convenience, this PoC is based on drm-rust-next. If we decide to
proceed with it, we would do it after the patchset extracting and moving
the bitfield logic [2] lands, as the two would conflict heavily.
Patch 1 is a pre-requisite that should be merged to nova-core, but can
be considered external to this series.
Patch 2 is the `BoundedInt` implementation.
Patch 3 makes nova-core use `BoundedInt` for its register macro, and
serves to illustrate how callers of the register field accessors are
affected by the change (rather minimally imho).
Feedback is welcome! If there is no pushback I will remove the RFC tag
for the next revision as I think the `BoundedInt` implementation is
already rather exhaustive.
[1] https://lore.kernel.org/rust-for-linux/DD5D59FH4JTT.2G5WEXF3RBCQJ at
nvidia.com/
[2] https://lore.kernel.org/rust-for-linux/DD68A3TZD9CV.2CL7R7K4UAICU at
kernel.org/T/
Signed-off-by: Alexandre Courbot <acourbot at nvidia.com>
---
Changes in v2:
- Thorough implementation of `BoundedInt`.
- nova-core fully adapted to use `BoundedInt`.
- Link to v1: https://lore.kernel.org/r/20251002-bounded_ints-v1-0-dd60f5804ea4
at nvidia.com
---
Alexandre Courbot (3):
gpu: nova-core: register: use field type for Into implementation
rust: kernel: add bounded integer types
gpu: nova-core: use BoundedInt
drivers/gpu/nova-core/falcon.rs | 118 ++++---
drivers/gpu/nova-core/falcon/hal/ga102.rs | 5 +-
drivers/gpu/nova-core/fb/hal/ga100.rs | 3 +-
drivers/gpu/nova-core/gpu.rs | 9 +-
drivers/gpu/nova-core/regs.rs | 139 ++++-----
drivers/gpu/nova-core/regs/macros.rs | 264 ++++++++--------
rust/kernel/lib.rs | 1 +
rust/kernel/num.rs | 499 ++++++++++++++++++++++++++++++
8 files changed, 783 insertions(+), 255 deletions(-)
---
base-commit: 299eb32863e584cfff7c6b667c3e92ae7d4d2bf9
change-id: 20251001-bounded_ints-1d0457d9ae26
Best regards,
--
Alexandre Courbot <acourbot at nvidia.com>
Alexandre Courbot
2025-Oct-09 12:37 UTC
[PATCH RFC v2 1/3] gpu: nova-core: register: use field type for Into implementation
The getter method of a field works with the field type, but its setter
expects the type of the register. This leads to an asymmetry in the
From/Into implementations required for a field with a dedicated type.
For instance, a field declared as
pub struct ControlReg(u32) {
3:0 mode as u8 ?=> Mode;
...
}
currently requires the following implementations:
impl TryFrom<u8> for Mode {
...
}
impl From<Mode> for u32 {
...
}
Change this so the `From<Mode>` now needs to be implemented for `u8`,
i.e. the primitive type of the field. This is more consistent, and will
become a requirement once we start using the TryFrom/Into derive macros
to implement these automatically.
Reported-by: Edwin Peer <epeer at nvidia.com>
Signed-off-by: Alexandre Courbot <acourbot at nvidia.com>
---
drivers/gpu/nova-core/falcon.rs | 38 +++++++++++++++++++++++++-----------
drivers/gpu/nova-core/regs/macros.rs | 10 +++++-----
2 files changed, 32 insertions(+), 16 deletions(-)
diff --git a/drivers/gpu/nova-core/falcon.rs b/drivers/gpu/nova-core/falcon.rs
index 37e6298195e4..3f505b870601 100644
--- a/drivers/gpu/nova-core/falcon.rs
+++ b/drivers/gpu/nova-core/falcon.rs
@@ -22,11 +22,11 @@
pub(crate) mod sec2;
// TODO[FPRI]: Replace with `ToPrimitive`.
-macro_rules! impl_from_enum_to_u32 {
+macro_rules! impl_from_enum_to_u8 {
($enum_type:ty) => {
- impl From<$enum_type> for u32 {
+ impl From<$enum_type> for u8 {
fn from(value: $enum_type) -> Self {
- value as u32
+ value as u8
}
}
};
@@ -46,7 +46,7 @@ pub(crate) enum FalconCoreRev {
Rev6 = 6,
Rev7 = 7,
}
-impl_from_enum_to_u32!(FalconCoreRev);
+impl_from_enum_to_u8!(FalconCoreRev);
// TODO[FPRI]: replace with `FromPrimitive`.
impl TryFrom<u8> for FalconCoreRev {
@@ -81,7 +81,7 @@ pub(crate) enum FalconCoreRevSubversion {
Subversion2 = 2,
Subversion3 = 3,
}
-impl_from_enum_to_u32!(FalconCoreRevSubversion);
+impl_from_enum_to_u8!(FalconCoreRevSubversion);
// TODO[FPRI]: replace with `FromPrimitive`.
impl TryFrom<u8> for FalconCoreRevSubversion {
@@ -125,7 +125,7 @@ pub(crate) enum FalconSecurityModel {
/// Also known as High-Secure, Privilege Level 3 or PL3.
Heavy = 3,
}
-impl_from_enum_to_u32!(FalconSecurityModel);
+impl_from_enum_to_u8!(FalconSecurityModel);
// TODO[FPRI]: replace with `FromPrimitive`.
impl TryFrom<u8> for FalconSecurityModel {
@@ -157,7 +157,7 @@ pub(crate) enum FalconModSelAlgo {
#[default]
Rsa3k = 1,
}
-impl_from_enum_to_u32!(FalconModSelAlgo);
+impl_from_enum_to_u8!(FalconModSelAlgo);
// TODO[FPRI]: replace with `FromPrimitive`.
impl TryFrom<u8> for FalconModSelAlgo {
@@ -179,7 +179,7 @@ pub(crate) enum DmaTrfCmdSize {
#[default]
Size256B = 0x6,
}
-impl_from_enum_to_u32!(DmaTrfCmdSize);
+impl_from_enum_to_u8!(DmaTrfCmdSize);
// TODO[FPRI]: replace with `FromPrimitive`.
impl TryFrom<u8> for DmaTrfCmdSize {
@@ -202,7 +202,6 @@ pub(crate) enum PeregrineCoreSelect {
/// RISC-V core is active.
Riscv = 1,
}
-impl_from_enum_to_u32!(PeregrineCoreSelect);
impl From<bool> for PeregrineCoreSelect {
fn from(value: bool) -> Self {
@@ -213,6 +212,15 @@ fn from(value: bool) -> Self {
}
}
+impl From<PeregrineCoreSelect> for bool {
+ fn from(value: PeregrineCoreSelect) -> Self {
+ match value {
+ PeregrineCoreSelect::Falcon => false,
+ PeregrineCoreSelect::Riscv => true,
+ }
+ }
+}
+
/// Different types of memory present in a falcon core.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub(crate) enum FalconMem {
@@ -236,7 +244,7 @@ pub(crate) enum FalconFbifTarget {
/// Non-coherent system memory (System DRAM).
NoncoherentSysmem = 2,
}
-impl_from_enum_to_u32!(FalconFbifTarget);
+impl_from_enum_to_u8!(FalconFbifTarget);
// TODO[FPRI]: replace with `FromPrimitive`.
impl TryFrom<u8> for FalconFbifTarget {
@@ -263,7 +271,6 @@ pub(crate) enum FalconFbifMemType {
/// Physical memory addresses.
Physical = 1,
}
-impl_from_enum_to_u32!(FalconFbifMemType);
/// Conversion from a single-bit register field.
impl From<bool> for FalconFbifMemType {
@@ -275,6 +282,15 @@ fn from(value: bool) -> Self {
}
}
+impl From<FalconFbifMemType> for bool {
+ fn from(value: FalconFbifMemType) -> Self {
+ match value {
+ FalconFbifMemType::Virtual => false,
+ FalconFbifMemType::Physical => true,
+ }
+ }
+}
+
/// Type used to represent the `PFALCON` registers address base for a given
falcon engine.
pub(crate) struct PFalconBase(());
diff --git a/drivers/gpu/nova-core/regs/macros.rs
b/drivers/gpu/nova-core/regs/macros.rs
index 754c14ee7f40..73811a115762 100644
--- a/drivers/gpu/nova-core/regs/macros.rs
+++ b/drivers/gpu/nova-core/regs/macros.rs
@@ -482,7 +482,7 @@ impl $name {
register!(
@leaf_accessor $name $hi:$lo $field
{ |f| <$into_type>::from(if f != 0 { true } else { false }) }
- $into_type => $into_type $(, $comment)?;
+ bool $into_type => $into_type $(, $comment)?;
);
};
@@ -499,7 +499,7 @@ impl $name {
$(, $comment:literal)?;
) => {
register!(@leaf_accessor $name $hi:$lo $field
- { |f| <$try_into_type>::try_from(f as $type) } $try_into_type
=>
+ { |f| <$try_into_type>::try_from(f as $type) } $type
$try_into_type =>
::core::result::Result<
$try_into_type,
<$try_into_type as
::core::convert::TryFrom<$type>>::Error
@@ -513,7 +513,7 @@ impl $name {
$(, $comment:literal)?;
) => {
register!(@leaf_accessor $name $hi:$lo $field
- { |f| <$into_type>::from(f as $type) } $into_type =>
$into_type $(, $comment)?;);
+ { |f| <$into_type>::from(f as $type) } $type $into_type =>
$into_type $(, $comment)?;);
};
// Shortcut for non-boolean fields defined without the `=>` or `?=>`
syntax.
@@ -527,7 +527,7 @@ impl $name {
// Generates the accessor methods for a single field.
(
@leaf_accessor $name:ident $hi:tt:$lo:tt $field:ident
- { $process:expr } $to_type:ty => $res_type:ty $(,
$comment:literal)?;
+ { $process:expr } $prim_type:tt $to_type:ty => $res_type:ty $(,
$comment:literal)?;
) => {
::kernel::macros::paste!(
const [<$field:upper _RANGE>]:
::core::ops::RangeInclusive<u8> = $lo..=$hi;
@@ -559,7 +559,7 @@ pub(crate) fn $field(self) -> $res_type {
pub(crate) fn [<set_ $field>](mut self, value: $to_type) ->
Self {
const MASK: u32 = $name::[<$field:upper _MASK>];
const SHIFT: u32 = $name::[<$field:upper _SHIFT>];
- let value = (u32::from(value) << SHIFT) & MASK;
+ let value = (u32::from($prim_type::from(value)) << SHIFT)
& MASK;
self.0 = (self.0 & !MASK) | value;
self
--
2.51.0
Alexandre Courbot
2025-Oct-09 12:37 UTC
[PATCH RFC v2 2/3] rust: kernel: add bounded integer types
Add the BoundedInt type, which restricts the number of bits allowed to
be used in a given integer value. This is useful to carry guarantees
when setting bitfields.
Alongside this type, many `From` and `TryFrom` implementations are
provided to reduce friction when using with regular integer types. Proxy
implementations of common integer traits are also provided.
Signed-off-by: Alexandre Courbot <acourbot at nvidia.com>
---
rust/kernel/lib.rs | 1 +
rust/kernel/num.rs | 499 +++++++++++++++++++++++++++++++++++++++++++++++++++++
2 files changed, 500 insertions(+)
diff --git a/rust/kernel/lib.rs b/rust/kernel/lib.rs
index fcffc3988a90..21c1f452ee6a 100644
--- a/rust/kernel/lib.rs
+++ b/rust/kernel/lib.rs
@@ -101,6 +101,7 @@
pub mod mm;
#[cfg(CONFIG_NET)]
pub mod net;
+pub mod num;
pub mod of;
#[cfg(CONFIG_PM_OPP)]
pub mod opp;
diff --git a/rust/kernel/num.rs b/rust/kernel/num.rs
new file mode 100644
index 000000000000..b2aad95ce51c
--- /dev/null
+++ b/rust/kernel/num.rs
@@ -0,0 +1,499 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Numerical types for the kernel.
+
+use kernel::prelude::*;
+
+/// Integer type for which only the bits `0..NUM_BITS` are valid.
+///
+/// # Invariants
+///
+/// Stored values are represented with at most `NUM_BITS` bits.
+#[repr(transparent)]
+#[derive(Clone, Copy, Debug, Default, Hash)]
+pub struct BoundedInt<T, const NUM_BITS: u32>(T);
+
+/// Returns `true` if `$value` can be represented with at most `$NUM_BITS` on
`$type`.
+macro_rules! is_in_bounds {
+ ($value:expr, $type:ty, $num_bits:expr) => {{
+ let v = $value;
+ v & <$type as Boundable<NUM_BITS>>::MASK == v
+ }};
+}
+
+/// Trait for primitive integer types that can be used with `BoundedInt`.
+pub trait Boundable<const NUM_BITS: u32>
+where
+ Self: Sized + Copy + core::ops::BitAnd<Output = Self> +
core::cmp::PartialEq,
+ Self: TryInto<u8> + TryInto<u16> + TryInto<u32> +
TryInto<u64>,
+{
+ /// Mask of the valid bits for this type.
+ const MASK: Self;
+
+ /// Returns `true` if `value` can be represented with at most `NUM_BITS`.
+ ///
+ /// TODO: post-RFC: replace this with a left-shift followed by right-shift
operation. This will
+ /// allow us to handle signed values as well.
+ fn is_in_bounds(value: Self) -> bool {
+ is_in_bounds!(value, Self, NUM_BITS)
+ }
+}
+
+impl<const NUM_BITS: u32> Boundable<NUM_BITS> for u8 {
+ const MASK: u8 = crate::bits::genmask_u8(0..=(NUM_BITS - 1));
+}
+
+impl<const NUM_BITS: u32> Boundable<NUM_BITS> for u16 {
+ const MASK: u16 = crate::bits::genmask_u16(0..=(NUM_BITS - 1));
+}
+
+impl<const NUM_BITS: u32> Boundable<NUM_BITS> for u32 {
+ const MASK: u32 = crate::bits::genmask_u32(0..=(NUM_BITS - 1));
+}
+
+impl<const NUM_BITS: u32> Boundable<NUM_BITS> for u64 {
+ const MASK: u64 = crate::bits::genmask_u64(0..=(NUM_BITS - 1));
+}
+
+impl<T, const NUM_BITS: u32> BoundedInt<T, NUM_BITS>
+where
+ T: Boundable<NUM_BITS>,
+{
+ /// Checks that `value` is valid for this type at compile-time and build a
new value.
+ ///
+ /// This relies on [`build_assert!`] to perform validation at compile-time.
If `value` cannot
+ /// be inferred to be in bounds at compile-time, use the fallible
[`Self::try_new`] instead.
+ ///
+ /// When possible, use one of the `new_const` methods instead of this
method as it statically
+ /// validates `value` instead of relying on the compiler's
optimizations.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use kernel::num::BoundedInt;
+ ///
+ /// # fn some_number() -> u32 { 0xffffffff }
+ ///
+ /// assert_eq!(BoundedInt::<u8, 1>::new(1).get(), 1);
+ /// assert_eq!(BoundedInt::<u16, 8>::new(0xff).get(), 0xff);
+ ///
+ /// // Triggers a build error as `0x1ff` doesn't fit into 8 bits.
+ /// // assert_eq!(BoundedInt::<u32, 8>::new(0x1ff).get(), 0x1ff);
+ ///
+ /// let v: u32 = some_number();
+ /// // Triggers a build error as `v` cannot be asserted to fit within 4
bits...
+ /// // let _ = BoundedInt::<u32, 4>::new(v);
+ /// // ... but this works as the compiler can assert the range from the
mask.
+ /// let _ = BoundedInt::<u32, 4>::new(v & 0xf);
+ /// ```
+ pub fn new(value: T) -> Self {
+ crate::build_assert!(
+ T::is_in_bounds(value),
+ "Provided parameter is larger than maximal supported
value"
+ );
+
+ Self(value)
+ }
+
+ /// Attempts to convert `value` into a value bounded by `NUM_BITS`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use kernel::num::BoundedInt;
+ ///
+ /// assert_eq!(BoundedInt::<u8, 1>::try_new(1).map(|v| v.get()),
Ok(1));
+ /// assert_eq!(BoundedInt::<u16, 8>::try_new(0xff).map(|v| v.get()),
Ok(0xff));
+ ///
+ /// // `0x1ff` doesn't fit into 8 bits.
+ /// assert_eq!(BoundedInt::<u32, 8>::try_new(0x1ff), Err(EOVERFLOW));
+ /// ```
+ pub fn try_new(value: T) -> Result<Self> {
+ if !T::is_in_bounds(value) {
+ Err(EOVERFLOW)
+ } else {
+ Ok(Self(value))
+ }
+ }
+
+ /// Returns the contained value as a primitive type.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use kernel::num::BoundedInt;
+ ///
+ /// let v = BoundedInt::<u32, 4>::new_const::<7>();
+ /// assert_eq!(v.get(), 7u32);
+ /// ```
+ pub fn get(self) -> T {
+ if !T::is_in_bounds(self.0) {
+ // SAFETY: Per the invariants, `self.0` cannot have bits set
outside of `MASK`, so
+ // this block will
+ // never be reached.
+ unsafe { core::hint::unreachable_unchecked() }
+ }
+ self.0
+ }
+
+ /// Increase the number of bits usable for `self`.
+ ///
+ /// This operation cannot fail.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use kernel::num::BoundedInt;
+ ///
+ /// let v = BoundedInt::<u32, 4>::new_const::<7>();
+ /// let larger_v = v.enlarge::<12>();
+ /// // The contained values are equal even though `larger_v` has a bigger
capacity.
+ /// assert_eq!(larger_v, v);
+ /// ```
+ pub const fn enlarge<const NEW_NUM_BITS: u32>(self) ->
BoundedInt<T, NEW_NUM_BITS>
+ where
+ T: Boundable<NEW_NUM_BITS>,
+ T: Copy,
+ {
+ build_assert!(NEW_NUM_BITS >= NUM_BITS);
+
+ // INVARIANT: the value did fit within `NUM_BITS`, so it will all the
more fit within
+ // `NEW_NUM_BITS` which is larger.
+ BoundedInt(self.0)
+ }
+
+ /// Shrink the number of bits usable for `self`.
+ ///
+ /// Returns `EOVERFLOW` if the value of `self` cannot be represented within
`NEW_NUM_BITS`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use kernel::num::BoundedInt;
+ ///
+ /// let v = BoundedInt::<u32, 12>::new_const::<7>();
+ /// let smaller_v = v.shrink::<4>()?;
+ /// // The contained values are equal even though `smaller_v` has a smaller
capacity.
+ /// assert_eq!(smaller_v, v);
+ ///
+ /// # Ok::<(), Error>(())
+ /// ```
+ pub fn shrink<const NEW_NUM_BITS: u32>(self) ->
Result<BoundedInt<T, NEW_NUM_BITS>>
+ where
+ T: Boundable<NEW_NUM_BITS>,
+ T: Copy,
+ {
+ BoundedInt::<T, NEW_NUM_BITS>::try_new(self.get())
+ }
+
+ /// Casts `self` into a `BoundedInt` using a different storage type, but
using the same
+ /// number of bits for representation.
+ ///
+ /// This method cannot fail as the number of bits used for representation
doesn't change.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use kernel::num::BoundedInt;
+ ///
+ /// let v = BoundedInt::<u32, 4>::new_const::<7>();
+ /// let smaller_v: BoundedInt<u8, _> = v.cast();
+ /// // The contained values are equal even though `smaller_v` has a smaller
storage type.
+ /// assert_eq!(u32::from(smaller_v.get()), v.get());
+ /// ```
+ pub fn cast<U>(self) -> BoundedInt<U, NUM_BITS>
+ where
+ U: TryFrom<T> + Boundable<NUM_BITS>,
+ {
+ // SAFETY: the contained value is represented using `NUM_BITS`, and `U`
can be bounded to
+ // `NUM_BITS`, hence the conversion cannot fail.
+ let value = unsafe { U::try_from(self.0).unwrap_unchecked() };
+
+ // INVARIANT: although the storage type has changed, the value is still
represented within
+ // `NUM_BITS`.
+ BoundedInt(value)
+ }
+}
+
+/// Validating the value as a const expression cannot be done as a regular
method, as the
+/// arithmetic expressions we rely on to check the bounds are not const. Thus,
implement
+/// `new_const` using a macro.
+macro_rules! impl_const_new {
+ ($($type:ty)*) => {
+ $(
+ impl<const NUM_BITS: u32> BoundedInt<$type, NUM_BITS> {
+ /// Creates a bounded value for `VALUE`, statically validated.
+ ///
+ /// This method should be used instead of [`Self::new`] when the
value is a constant
+ /// expression.
+ ///
+ /// # Examples
+ /// ```
+ /// use kernel::num::BoundedInt;
+ ///
+ #[doc = ::core::concat!(
+ "let v = BoundedInt::<",
+ ::core::stringify!($type),
+ ", 4>::new_const::<7>();")]
+ /// assert_eq!(v.get(), 7);
+ /// ```
+ pub const fn new_const<const VALUE: $type>() -> Self {
+ build_assert!(is_in_bounds!(VALUE, $type, NUM_BITS));
+
+ Self(VALUE)
+ }
+ }
+ )*
+ };
+}
+
+impl_const_new!(u8 u16 u32 u64);
+
+/// Declares a new `$trait` and implements it for all bounded types represented
using `$num_bits`.
+///
+/// This is used to declare properties as traits that we can use for later
implementations.
+macro_rules! impl_size_rule {
+ ($trait:ident, $($num_bits:literal)*) => {
+ trait $trait {}
+
+ $(
+ impl<T> $trait for BoundedInt<T, $num_bits> where T:
Boundable<$num_bits> {}
+ )*
+ };
+}
+
+// Bounds that are larger than a `u64`.
+impl_size_rule!(LargerThanU64, 64);
+
+// Bounds that are larger than a `u32`.
+impl_size_rule!(LargerThanU32,
+ 32 33 34 35 36 37 38 39
+ 40 41 42 43 44 45 46 47
+ 48 49 50 51 52 53 54 55
+ 56 57 58 59 60 61 62 63
+);
+// Anything larger than `u64` is also larger than `u32`.
+impl<T> LargerThanU32 for T where T: LargerThanU64 {}
+
+// Bounds that are larger than a `u16`.
+impl_size_rule!(LargerThanU16,
+ 16 17 18 19 20 21 22 23
+ 24 25 26 27 28 29 30 31
+);
+// Anything larger than `u32` is also larger than `u16`.
+impl<T> LargerThanU16 for T where T: LargerThanU32 {}
+
+// Bounds that are larger than a `u8`.
+impl_size_rule!(LargerThanU8, 8 9 10 11 12 13 14 15);
+// Anything larger than `u16` is also larger than `u8`.
+impl<T> LargerThanU8 for T where T: LargerThanU16 {}
+
+// Bounds that are larger than a boolean.
+impl_size_rule!(LargerThanBool, 1 2 3 4 5 6 7);
+// Anything larger than `u8` is also larger than `bool`.
+impl<T> LargerThanBool for T where T: LargerThanU8 {}
+
+/// Generates `From` implementations from a primitive type into a bounded
integer that is
+/// guaranteed to being able to contain it.
+macro_rules! impl_from_primitive {
+ ($($type:ty => $trait:ident),*) => {
+ $(
+ impl<T, const NUM_BITS: u32> From<$type> for
BoundedInt<T, NUM_BITS>
+ where
+ Self: $trait,
+ T: From<$type>,
+ {
+ fn from(value: $type) -> Self {
+ Self(T::from(value))
+ }
+ }
+ )*
+ }
+}
+
+impl_from_primitive!(
+ bool => LargerThanBool,
+ u8 => LargerThanU8,
+ u16 => LargerThanU16,
+ u32 => LargerThanU32,
+ u64 => LargerThanU64
+);
+
+impl_size_rule!(FitsIntoBool, 1);
+
+impl_size_rule!(FitsIntoU8, 2 3 4 5 6 7 8);
+
+// Anything that fits into a `bool` also fits into a `u8`.
+impl<T> FitsIntoU8 for T where T: FitsIntoBool {}
+
+impl_size_rule!(FitsIntoU16, 9 10 11 12 13 14 15 16);
+
+// Anything that fits into a `u8` also fits into a `u16`.
+impl<T> FitsIntoU16 for T where T: FitsIntoU8 {}
+
+impl_size_rule!(FitsIntoU32,
+ 17 18 19 20 21 22 23 24
+ 25 26 27 28 29 30 31 32
+);
+
+// Anything that fits into a `u16` also fits into a `u32`.
+impl<T> FitsIntoU32 for T where T: FitsIntoU16 {}
+
+impl_size_rule!(FitsIntoU64,
+ 33 34 35 36 37 38 39 40
+ 41 42 43 44 45 46 47 48
+ 49 50 51 52 53 54 55 56
+ 57 58 59 60 61 62 63 64
+);
+
+// Anything that fits into a `u32` also fits into a `u64`.
+impl<T> FitsIntoU64 for T where T: FitsIntoU32 {}
+
+/// Generates `From` implementations from a bounded integer into a primitive
type that is
+/// guaranteed to being able to contain it.
+macro_rules! impl_into_primitive {
+ ($($trait:ident => $type:ty),*) => {
+ $(
+ impl<T, const NUM_BITS: u32> From<BoundedInt<T,
NUM_BITS>> for $type
+ where
+ T: Boundable<NUM_BITS>,
+ BoundedInt<T, NUM_BITS>: $trait
+ {
+ fn from(value: BoundedInt<T, NUM_BITS>) -> Self {
+ // SAFETY: per the `BoundedInt` invariants, less than 8 bits
are used to the conversion
+ // cannot fail.
+ unsafe { value.get().try_into().unwrap_unchecked() }
+ }
+ }
+ )*
+ }
+}
+
+impl_into_primitive!(
+ FitsIntoU8 => u8,
+ FitsIntoU16 => u16,
+ FitsIntoU32 => u32,
+ FitsIntoU64 => u64
+);
+
+// Conversion to boolean must be handled separately as it does not have
`TryFrom` implementation
+// from integers.
+impl<T> From<BoundedInt<T, 1>> for bool
+where
+ T: Boundable<1>,
+ BoundedInt<T, 1>: FitsIntoBool,
+ T: PartialEq + Zeroable,
+{
+ fn from(value: BoundedInt<T, 1>) -> Self {
+ value.get() != Zeroable::zeroed()
+ }
+}
+
+/// Trait similar to `TryInto` to avoid conflicting implementations errors.
+pub trait TryIntoBounded<T: Boundable<NUM_BITS>, const NUM_BITS:
u32> {
+ /// Attempts to convert `self` into a value bounded by `NUM_BITS`.
+ fn try_into(self) -> Result<BoundedInt<T, NUM_BITS>>;
+}
+
+/// Any value can be attempted to be converted into a bounded integer of any
size.
+impl<T, U, const NUM_BITS: u32> TryIntoBounded<T, NUM_BITS> for U
+where
+ T: Boundable<NUM_BITS>,
+ U: TryInto<T>,
+{
+ fn try_into(self) -> Result<BoundedInt<T, NUM_BITS>> {
+ self.try_into()
+ .map_err(|_| EOVERFLOW)
+ .and_then(BoundedInt::try_new)
+ }
+}
+
+/// `BoundedInts` can be compared if their respective storage types can be.
+impl<T, U, const NUM_BITS: u32, const NUM_BITS_U: u32>
PartialEq<BoundedInt<U, NUM_BITS_U>>
+ for BoundedInt<T, NUM_BITS>
+where
+ T: Boundable<NUM_BITS>,
+ U: Boundable<NUM_BITS_U>,
+ T: PartialEq<U>,
+{
+ fn eq(&self, other: &BoundedInt<U, NUM_BITS_U>) -> bool {
+ self.get() == other.get()
+ }
+}
+
+impl<T, const NUM_BITS: u32> Eq for BoundedInt<T, NUM_BITS> where
T: Boundable<NUM_BITS> {}
+
+/// `BoundedInts` can be ordered if their respective storage types can be.
+impl<T, U, const NUM_BITS: u32, const NUM_BITS_U: u32>
PartialOrd<BoundedInt<U, NUM_BITS_U>>
+ for BoundedInt<T, NUM_BITS>
+where
+ T: Boundable<NUM_BITS>,
+ U: Boundable<NUM_BITS_U>,
+ T: PartialOrd<U>,
+{
+ fn partial_cmp(&self, other: &BoundedInt<U, NUM_BITS_U>)
-> Option<core::cmp::Ordering> {
+ self.get().partial_cmp(&other.get())
+ }
+}
+
+impl<T, const NUM_BITS: u32> Ord for BoundedInt<T, NUM_BITS>
+where
+ T: Boundable<NUM_BITS>,
+ T: Ord,
+{
+ fn cmp(&self, other: &Self) -> core::cmp::Ordering {
+ self.get().cmp(&other.get())
+ }
+}
+
+/// Allow comparison with non-bounded values.
+impl<T, const NUM_BITS: u32> PartialEq<T> for BoundedInt<T,
NUM_BITS>
+where
+ T: Boundable<NUM_BITS>,
+ T: PartialEq,
+{
+ fn eq(&self, other: &T) -> bool {
+ self.get() == *other
+ }
+}
+
+/// Allow ordering with non-bounded values.
+impl<T, const NUM_BITS: u32> PartialOrd<T> for BoundedInt<T,
NUM_BITS>
+where
+ T: Boundable<NUM_BITS>,
+ T: PartialOrd,
+{
+ fn partial_cmp(&self, other: &T) ->
Option<core::cmp::Ordering> {
+ self.get().partial_cmp(other)
+ }
+}
+
+impl<T, const NUM_BITS: u32> core::fmt::Display for BoundedInt<T,
NUM_BITS>
+where
+ T: Boundable<NUM_BITS>,
+ T: core::fmt::Display,
+{
+ fn fmt(&self, f: &mut core::fmt::Formatter<'_>) ->
core::fmt::Result {
+ self.0.fmt(f)
+ }
+}
+
+impl<T, const NUM_BITS: u32> core::fmt::LowerHex for BoundedInt<T,
NUM_BITS>
+where
+ T: Boundable<NUM_BITS>,
+ T: core::fmt::LowerHex,
+{
+ fn fmt(&self, f: &mut core::fmt::Formatter<'_>) ->
core::fmt::Result {
+ self.0.fmt(f)
+ }
+}
+
+impl<T, const NUM_BITS: u32> core::fmt::UpperHex for BoundedInt<T,
NUM_BITS>
+where
+ T: Boundable<NUM_BITS>,
+ T: core::fmt::UpperHex,
+{
+ fn fmt(&self, f: &mut core::fmt::Formatter<'_>) ->
core::fmt::Result {
+ self.0.fmt(f)
+ }
+}
--
2.51.0
Use BoundedInt with the register!() macro and adapt the nova-core code
accordingly. This makes it impossible to trim values when setting a
register field, because either the value of the field has been inferred
at compile-time to fit within the bounds of the field, or the user has
been forced to check at runtime that it does indeed fit.
The use of BoundedInt actually simplifies register fields definitions,
as they don't need an intermediate storage type (the "as ..." part
of
fields definitions). Instead, the internal storage type for each field
is now the bounded integer of its width in bits, which can optionally be
converted to another type that implements `From`` or `TryFrom`` for that
bounded integer type.
This means that something like
register!(NV_PDISP_VGA_WORKSPACE_BASE @ 0x00625f04 {
3:3 status_valid as bool,
31:8 addr as u32,
});
Now becomes
register!(NV_PDISP_VGA_WORKSPACE_BASE @ 0x00625f04 {
3:3 status_valid => bool,
31:8 addr,
});
(here `status_valid` is infallibly converted to a bool for convenience
and to remain compatible with the previous semantics)
The field setter/getters are also simplified. If a field has no target
type, then its setter expects any type that implements `Into` to the
field's bounded integer type. Due to the many `From` implementations for
primitive types, this means that most calls can be left unchanged. If
the caller passes a value that is potentially larger than the field's
capacity, it must use the `try_` variant of the setter, which returns an
error if the value cannot be converted at runtime.
For fields that use `=>` to convert to another type, both setter and
getter are always infallible.
For fields that use `?=>` to fallibly convert to another type, only the
getter needs to be fallible as the setter always provide valid values by
design.
Outside of the register macro, the biggest changes occur in `falcon.rs`,
which defines many enums for fields - their conversion implementations
need to be changed from the original primitive type of the field to the
new corresponding bounded int type. Hopefully the TryFrom/Into derive
macros [1] can take care of implementing these, but it will need to be
adapted to support bounded integers... :/
But overall, I am rather happy at how simple it was to convert the whole
of nova-core to this.
Note: This RFC uses nova-core's register!() macro for practical
purposes, but the hope is to move this patch on top of the bitfield
macro after it is split out [2].
[1] https://lore.kernel.org/rust-for-linux/cover.1755235180.git.y.j3ms.n at
gmail.com/
[2] https://lore.kernel.org/rust-for-linux/20251003154748.1687160-1-joelagnelf
at nvidia.com/
Signed-off-by: Alexandre Courbot <acourbot at nvidia.com>
---
drivers/gpu/nova-core/falcon.rs | 134 ++++++++-------
drivers/gpu/nova-core/falcon/hal/ga102.rs | 5 +-
drivers/gpu/nova-core/fb/hal/ga100.rs | 3 +-
drivers/gpu/nova-core/gpu.rs | 9 +-
drivers/gpu/nova-core/regs.rs | 139 ++++++++--------
drivers/gpu/nova-core/regs/macros.rs | 264 +++++++++++++++---------------
6 files changed, 283 insertions(+), 271 deletions(-)
diff --git a/drivers/gpu/nova-core/falcon.rs b/drivers/gpu/nova-core/falcon.rs
index 3f505b870601..71cb09cf7d67 100644
--- a/drivers/gpu/nova-core/falcon.rs
+++ b/drivers/gpu/nova-core/falcon.rs
@@ -6,6 +6,7 @@
use hal::FalconHal;
use kernel::device;
use kernel::dma::DmaAddress;
+use kernel::num::{Boundable, BoundedInt};
use kernel::prelude::*;
use kernel::sync::aref::ARef;
use kernel::time::Delta;
@@ -22,11 +23,14 @@
pub(crate) mod sec2;
// TODO[FPRI]: Replace with `ToPrimitive`.
-macro_rules! impl_from_enum_to_u8 {
- ($enum_type:ty) => {
- impl From<$enum_type> for u8 {
+macro_rules! impl_from_enum_to_bounded {
+ ($enum_type:ty, $length:literal) => {
+ impl<T> From<$enum_type> for BoundedInt<T, $length>
+ where
+ T: From<u8> + Boundable<$length>,
+ {
fn from(value: $enum_type) -> Self {
- value as u8
+ BoundedInt::new(T::from(value as u8))
}
}
};
@@ -46,16 +50,19 @@ pub(crate) enum FalconCoreRev {
Rev6 = 6,
Rev7 = 7,
}
-impl_from_enum_to_u8!(FalconCoreRev);
+impl_from_enum_to_bounded!(FalconCoreRev, 4);
// TODO[FPRI]: replace with `FromPrimitive`.
-impl TryFrom<u8> for FalconCoreRev {
+impl<T> TryFrom<BoundedInt<T, 4>> for FalconCoreRev
+where
+ T: Boundable<4>,
+{
type Error = Error;
- fn try_from(value: u8) -> Result<Self> {
+ fn try_from(value: BoundedInt<T, 4>) -> Result<Self> {
use FalconCoreRev::*;
- let rev = match value {
+ let rev = match u8::from(value) {
1 => Rev1,
2 => Rev2,
3 => Rev3,
@@ -81,24 +88,25 @@ pub(crate) enum FalconCoreRevSubversion {
Subversion2 = 2,
Subversion3 = 3,
}
-impl_from_enum_to_u8!(FalconCoreRevSubversion);
+impl_from_enum_to_bounded!(FalconCoreRevSubversion, 2);
// TODO[FPRI]: replace with `FromPrimitive`.
-impl TryFrom<u8> for FalconCoreRevSubversion {
- type Error = Error;
-
- fn try_from(value: u8) -> Result<Self> {
+impl<T> From<BoundedInt<T, 2>> for FalconCoreRevSubversion
+where
+ T: Boundable<2>,
+{
+ fn from(value: BoundedInt<T, 2>) -> Self {
use FalconCoreRevSubversion::*;
- let sub_version = match value & 0b11 {
+ match u8::from(value) {
0 => Subversion0,
1 => Subversion1,
2 => Subversion2,
3 => Subversion3,
- _ => return Err(EINVAL),
- };
-
- Ok(sub_version)
+ // TODO: somehow the compiler cannot infer that `value` cannot be
> 3. Find a way to
+ // handle this gracefully, or switch back to fallible ops.
+ _ => panic!(),
+ }
}
}
@@ -125,16 +133,19 @@ pub(crate) enum FalconSecurityModel {
/// Also known as High-Secure, Privilege Level 3 or PL3.
Heavy = 3,
}
-impl_from_enum_to_u8!(FalconSecurityModel);
+impl_from_enum_to_bounded!(FalconSecurityModel, 2);
// TODO[FPRI]: replace with `FromPrimitive`.
-impl TryFrom<u8> for FalconSecurityModel {
+impl<T> TryFrom<BoundedInt<T, 2>> for FalconSecurityModel
+where
+ T: Boundable<2>,
+{
type Error = Error;
- fn try_from(value: u8) -> Result<Self> {
+ fn try_from(value: BoundedInt<T, 2>) -> Result<Self> {
use FalconSecurityModel::*;
- let sec_model = match value {
+ let sec_model = match u8::from(value) {
0 => None,
2 => Light,
3 => Heavy,
@@ -157,14 +168,17 @@ pub(crate) enum FalconModSelAlgo {
#[default]
Rsa3k = 1,
}
-impl_from_enum_to_u8!(FalconModSelAlgo);
+impl_from_enum_to_bounded!(FalconModSelAlgo, 8);
// TODO[FPRI]: replace with `FromPrimitive`.
-impl TryFrom<u8> for FalconModSelAlgo {
+impl<T> TryFrom<BoundedInt<T, 8>> for FalconModSelAlgo
+where
+ T: Boundable<8>,
+{
type Error = Error;
- fn try_from(value: u8) -> Result<Self> {
- match value {
+ fn try_from(value: BoundedInt<T, 8>) -> Result<Self> {
+ match u8::from(value) {
1 => Ok(FalconModSelAlgo::Rsa3k),
_ => Err(EINVAL),
}
@@ -179,14 +193,17 @@ pub(crate) enum DmaTrfCmdSize {
#[default]
Size256B = 0x6,
}
-impl_from_enum_to_u8!(DmaTrfCmdSize);
+impl_from_enum_to_bounded!(DmaTrfCmdSize, 3);
// TODO[FPRI]: replace with `FromPrimitive`.
-impl TryFrom<u8> for DmaTrfCmdSize {
+impl<T> TryFrom<BoundedInt<T, 3>> for DmaTrfCmdSize
+where
+ T: Boundable<3>,
+{
type Error = Error;
- fn try_from(value: u8) -> Result<Self> {
- match value {
+ fn try_from(value: BoundedInt<T, 3>) -> Result<Self> {
+ match u8::from(value) {
0x6 => Ok(Self::Size256B),
_ => Err(EINVAL),
}
@@ -202,25 +219,20 @@ pub(crate) enum PeregrineCoreSelect {
/// RISC-V core is active.
Riscv = 1,
}
+impl_from_enum_to_bounded!(PeregrineCoreSelect, 1);
-impl From<bool> for PeregrineCoreSelect {
- fn from(value: bool) -> Self {
- match value {
+impl<T> From<BoundedInt<T, 1>> for PeregrineCoreSelect
+where
+ T: Boundable<1> + Zeroable,
+{
+ fn from(value: BoundedInt<T, 1>) -> Self {
+ match bool::from(value) {
false => PeregrineCoreSelect::Falcon,
true => PeregrineCoreSelect::Riscv,
}
}
}
-impl From<PeregrineCoreSelect> for bool {
- fn from(value: PeregrineCoreSelect) -> Self {
- match value {
- PeregrineCoreSelect::Falcon => false,
- PeregrineCoreSelect::Riscv => true,
- }
- }
-}
-
/// Different types of memory present in a falcon core.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub(crate) enum FalconMem {
@@ -244,14 +256,17 @@ pub(crate) enum FalconFbifTarget {
/// Non-coherent system memory (System DRAM).
NoncoherentSysmem = 2,
}
-impl_from_enum_to_u8!(FalconFbifTarget);
+impl_from_enum_to_bounded!(FalconFbifTarget, 2);
// TODO[FPRI]: replace with `FromPrimitive`.
-impl TryFrom<u8> for FalconFbifTarget {
+impl<T> TryFrom<BoundedInt<T, 2>> for FalconFbifTarget
+where
+ T: Boundable<2>,
+{
type Error = Error;
- fn try_from(value: u8) -> Result<Self> {
- let res = match value {
+ fn try_from(value: BoundedInt<T, 2>) -> Result<Self> {
+ let res = match u8::from(value) {
0 => Self::LocalFb,
1 => Self::CoherentSysmem,
2 => Self::NoncoherentSysmem,
@@ -271,26 +286,21 @@ pub(crate) enum FalconFbifMemType {
/// Physical memory addresses.
Physical = 1,
}
+impl_from_enum_to_bounded!(FalconFbifMemType, 1);
/// Conversion from a single-bit register field.
-impl From<bool> for FalconFbifMemType {
- fn from(value: bool) -> Self {
- match value {
+impl<T> From<BoundedInt<T, 1>> for FalconFbifMemType
+where
+ T: Boundable<1> + Zeroable,
+{
+ fn from(value: BoundedInt<T, 1>) -> Self {
+ match bool::from(value) {
false => Self::Virtual,
true => Self::Physical,
}
}
}
-impl From<FalconFbifMemType> for bool {
- fn from(value: FalconFbifMemType) -> Self {
- match value {
- FalconFbifMemType::Virtual => false,
- FalconFbifMemType::Physical => true,
- }
- }
-}
-
/// Type used to represent the `PFALCON` registers address base for a given
falcon engine.
pub(crate) struct PFalconBase(());
@@ -440,7 +450,7 @@ pub(crate) fn reset(&self, bar: &Bar0) -> Result
{
self.reset_wait_mem_scrubbing(bar)?;
regs::NV_PFALCON_FALCON_RM::default()
- .set_value(regs::NV_PMC_BOOT_0::read(bar).into())
+ .set_value(u32::from(regs::NV_PMC_BOOT_0::read(bar)))
.write(bar, &E::ID);
Ok(())
@@ -507,18 +517,18 @@ fn dma_wr<F: FalconFirmware<Target = E>>(
.set_base((dma_start >> 8) as u32)
.write(bar, &E::ID);
regs::NV_PFALCON_FALCON_DMATRFBASE1::default()
- .set_base((dma_start >> 40) as u16)
+ .try_set_base(dma_start >> 40)?
.write(bar, &E::ID);
let cmd = regs::NV_PFALCON_FALCON_DMATRFCMD::default()
.set_size(DmaTrfCmdSize::Size256B)
.set_imem(target_mem == FalconMem::Imem)
- .set_sec(if sec { 1 } else { 0 });
+ .set_sec(BoundedInt::new(if sec { 1 } else { 0 }));
for pos in (0..num_transfers).map(|i| i * DMA_LEN) {
// Perform a transfer of size `DMA_LEN`.
regs::NV_PFALCON_FALCON_DMATRFMOFFS::default()
- .set_offs(load_offsets.dst_start + pos)
+ .try_set_offs(load_offsets.dst_start + pos)?
.write(bar, &E::ID);
regs::NV_PFALCON_FALCON_DMATRFFBOFFS::default()
.set_offs(src_start + pos)
diff --git a/drivers/gpu/nova-core/falcon/hal/ga102.rs
b/drivers/gpu/nova-core/falcon/hal/ga102.rs
index 0b1cbe7853b3..08c8b4123ce8 100644
--- a/drivers/gpu/nova-core/falcon/hal/ga102.rs
+++ b/drivers/gpu/nova-core/falcon/hal/ga102.rs
@@ -55,7 +55,7 @@ fn signature_reg_fuse_version_ga102(
// `ucode_idx` is guaranteed to be in the range [0..15], making the `read`
calls provable valid
// at build-time.
- let reg_fuse_version = if engine_id_mask & 0x0001 != 0 {
+ let reg_fuse_version: u16 = if engine_id_mask & 0x0001 != 0 {
regs::NV_FUSE_OPT_FPF_SEC2_UCODE1_VERSION::read(bar, ucode_idx).data()
} else if engine_id_mask & 0x0004 != 0 {
regs::NV_FUSE_OPT_FPF_NVDEC_UCODE1_VERSION::read(bar, ucode_idx).data()
@@ -64,7 +64,8 @@ fn signature_reg_fuse_version_ga102(
} else {
dev_err!(dev, "unexpected engine_id_mask {:#x}",
engine_id_mask);
return Err(EINVAL);
- };
+ }
+ .into();
// TODO[NUMM]: replace with `last_set_bit` once it lands.
Ok(u16::BITS - reg_fuse_version.leading_zeros())
diff --git a/drivers/gpu/nova-core/fb/hal/ga100.rs
b/drivers/gpu/nova-core/fb/hal/ga100.rs
index 871c42bf033a..5449902f2489 100644
--- a/drivers/gpu/nova-core/fb/hal/ga100.rs
+++ b/drivers/gpu/nova-core/fb/hal/ga100.rs
@@ -2,6 +2,7 @@
struct Ga100;
+use kernel::num::BoundedInt;
use kernel::prelude::*;
use crate::driver::Bar0;
@@ -18,7 +19,7 @@ pub(super) fn read_sysmem_flush_page_ga100(bar: &Bar0)
-> u64 {
pub(super) fn write_sysmem_flush_page_ga100(bar: &Bar0, addr: u64) {
regs::NV_PFB_NISO_FLUSH_SYSMEM_ADDR_HI::default()
- .set_adr_63_40((addr >> FLUSH_SYSMEM_ADDR_SHIFT_HI) as u32)
+ .set_adr_63_40(BoundedInt::new(addr >>
FLUSH_SYSMEM_ADDR_SHIFT_HI).cast())
.write(bar);
regs::NV_PFB_NISO_FLUSH_SYSMEM_ADDR::default()
.set_adr_39_08((addr >> FLUSH_SYSMEM_ADDR_SHIFT) as u32)
diff --git a/drivers/gpu/nova-core/gpu.rs b/drivers/gpu/nova-core/gpu.rs
index 5da9ad726483..7ed382d82fc7 100644
--- a/drivers/gpu/nova-core/gpu.rs
+++ b/drivers/gpu/nova-core/gpu.rs
@@ -1,5 +1,6 @@
// SPDX-License-Identifier: GPL-2.0
+use kernel::num::BoundedInt;
use kernel::{device, devres::Devres, error::code::*, pci, prelude::*,
sync::Arc};
use crate::driver::Bar0;
@@ -131,15 +132,15 @@ fn try_from(value: u8) -> Result<Self> {
}
pub(crate) struct Revision {
- major: u8,
- minor: u8,
+ major: BoundedInt<u8, 4>,
+ minor: BoundedInt<u8, 4>,
}
impl Revision {
fn from_boot0(boot0: regs::NV_PMC_BOOT_0) -> Self {
Self {
- major: boot0.major_revision(),
- minor: boot0.minor_revision(),
+ major: boot0.major_revision().cast(),
+ minor: boot0.minor_revision().cast(),
}
}
}
diff --git a/drivers/gpu/nova-core/regs.rs b/drivers/gpu/nova-core/regs.rs
index 206dab2e1335..1542d72e4a65 100644
--- a/drivers/gpu/nova-core/regs.rs
+++ b/drivers/gpu/nova-core/regs.rs
@@ -17,18 +17,19 @@
// PMC
register!(NV_PMC_BOOT_0 @ 0x00000000, "Basic revision information about
the GPU" {
- 3:0 minor_revision as u8, "Minor revision of the chip";
- 7:4 major_revision as u8, "Major revision of the chip";
- 8:8 architecture_1 as u8, "MSB of the architecture";
- 23:20 implementation as u8, "Implementation version of the
architecture";
- 28:24 architecture_0 as u8, "Lower bits of the architecture";
+ 3:0 minor_revision, "Minor revision of the chip";
+ 7:4 major_revision, "Major revision of the chip";
+ 8:8 architecture_1, "MSB of the architecture";
+ 23:20 implementation, "Implementation version of the
architecture";
+ 28:24 architecture_0, "Lower bits of the architecture";
});
impl NV_PMC_BOOT_0 {
/// Combines `architecture_0` and `architecture_1` to obtain the
architecture of the chip.
pub(crate) fn architecture(self) -> Result<Architecture> {
Architecture::try_from(
- self.architecture_0() | (self.architecture_1() <<
Self::ARCHITECTURE_0_RANGE.len()),
+ u8::from(self.architecture_0())
+ | (u8::from(self.architecture_1()) <<
Self::ARCHITECTURE_0_RANGE.len()),
)
}
@@ -49,7 +50,7 @@ pub(crate) fn chipset(self) -> Result<Chipset> {
register!(NV_PBUS_SW_SCRATCH_0E_FRTS_ERR => NV_PBUS_SW_SCRATCH[0xe],
"scratch register 0xe used as FRTS firmware error code" {
- 31:16 frts_err_code as u16;
+ 31:16 frts_err_code;
});
// PFB
@@ -58,17 +59,17 @@ pub(crate) fn chipset(self) -> Result<Chipset> {
// GPU to perform sysmembar operations (see `fb::SysmemFlush`).
register!(NV_PFB_NISO_FLUSH_SYSMEM_ADDR @ 0x00100c10 {
- 31:0 adr_39_08 as u32;
+ 31:0 adr_39_08;
});
register!(NV_PFB_NISO_FLUSH_SYSMEM_ADDR_HI @ 0x00100c40 {
- 23:0 adr_63_40 as u32;
+ 23:0 adr_63_40;
});
register!(NV_PFB_PRI_MMU_LOCAL_MEMORY_RANGE @ 0x00100ce0 {
- 3:0 lower_scale as u8;
- 9:4 lower_mag as u8;
- 30:30 ecc_mode_enabled as bool;
+ 3:0 lower_scale;
+ 9:4 lower_mag;
+ 30:30 ecc_mode_enabled => bool;
});
impl NV_PFB_PRI_MMU_LOCAL_MEMORY_RANGE {
@@ -87,7 +88,7 @@ pub(crate) fn usable_fb_size(self) -> u64 {
}
register!(NV_PFB_PRI_MMU_WPR2_ADDR_LO at 0x001fa824 {
- 31:4 lo_val as u32, "Bits 12..40 of the lower (inclusive) bound of
the WPR2 region";
+ 31:4 lo_val, "Bits 12..40 of the lower (inclusive) bound of the
WPR2 region";
});
impl NV_PFB_PRI_MMU_WPR2_ADDR_LO {
@@ -98,7 +99,7 @@ pub(crate) fn lower_bound(self) -> u64 {
}
register!(NV_PFB_PRI_MMU_WPR2_ADDR_HI at 0x001fa828 {
- 31:4 hi_val as u32, "Bits 12..40 of the higher (exclusive) bound of
the WPR2 region";
+ 31:4 hi_val, "Bits 12..40 of the higher (exclusive) bound of the
WPR2 region";
});
impl NV_PFB_PRI_MMU_WPR2_ADDR_HI {
@@ -123,7 +124,7 @@ pub(crate) fn higher_bound(self) -> u64 {
// `PGC6_AON_SECURE_SCRATCH_GROUP_05` register (which it needs to read
GFW_BOOT).
register!(NV_PGC6_AON_SECURE_SCRATCH_GROUP_05_PRIV_LEVEL_MASK @ 0x00118128,
"Privilege level mask register" {
- 0:0 read_protection_level0 as bool, "Set after FWSEC lowers its
protection level";
+ 0:0 read_protection_level0 => bool, "Set after FWSEC lowers its
protection level";
});
// OpenRM defines this as a register array, but doesn't specify its size
and only uses its first
@@ -133,7 +134,7 @@ pub(crate) fn higher_bound(self) -> u64 {
register!(
NV_PGC6_AON_SECURE_SCRATCH_GROUP_05_0_GFW_BOOT =>
NV_PGC6_AON_SECURE_SCRATCH_GROUP_05[0],
"Scratch group 05 register 0 used as GFW boot progress indicator"
{
- 7:0 progress as u8, "Progress of GFW boot (0xff means
completed)";
+ 7:0 progress, "Progress of GFW boot (0xff means
completed)";
}
);
@@ -145,13 +146,13 @@ pub(crate) fn completed(self) -> bool {
}
register!(NV_PGC6_AON_SECURE_SCRATCH_GROUP_42 @ 0x001183a4 {
- 31:0 value as u32;
+ 31:0 value;
});
register!(
NV_USABLE_FB_SIZE_IN_MB => NV_PGC6_AON_SECURE_SCRATCH_GROUP_42,
"Scratch group 42 register used as framebuffer size" {
- 31:0 value as u32, "Usable framebuffer size, in
megabytes";
+ 31:0 value, "Usable framebuffer size, in megabytes";
}
);
@@ -165,8 +166,8 @@ pub(crate) fn usable_fb_size(self) -> u64 {
// PDISP
register!(NV_PDISP_VGA_WORKSPACE_BASE @ 0x00625f04 {
- 3:3 status_valid as bool, "Set if the `addr` field is valid";
- 31:8 addr as u32, "VGA workspace base address divided by
0x10000";
+ 3:3 status_valid => bool, "Set if the `addr` field is
valid";
+ 31:8 addr, "VGA workspace base address divided by 0x10000";
});
impl NV_PDISP_VGA_WORKSPACE_BASE {
@@ -185,40 +186,40 @@ pub(crate) fn vga_workspace_addr(self) ->
Option<u64> {
pub(crate) const NV_FUSE_OPT_FPF_SIZE: usize = 16;
register!(NV_FUSE_OPT_FPF_NVDEC_UCODE1_VERSION @
0x00824100[NV_FUSE_OPT_FPF_SIZE] {
- 15:0 data as u16;
+ 15:0 data;
});
register!(NV_FUSE_OPT_FPF_SEC2_UCODE1_VERSION @
0x00824140[NV_FUSE_OPT_FPF_SIZE] {
- 15:0 data as u16;
+ 15:0 data;
});
register!(NV_FUSE_OPT_FPF_GSP_UCODE1_VERSION @ 0x008241c0[NV_FUSE_OPT_FPF_SIZE]
{
- 15:0 data as u16;
+ 15:0 data;
});
// PFALCON
register!(NV_PFALCON_FALCON_IRQSCLR @ PFalconBase[0x00000004] {
- 4:4 halt as bool;
- 6:6 swgen0 as bool;
+ 4:4 halt => bool;
+ 6:6 swgen0 => bool;
});
register!(NV_PFALCON_FALCON_MAILBOX0 @ PFalconBase[0x00000040] {
- 31:0 value as u32;
+ 31:0 value => u32;
});
register!(NV_PFALCON_FALCON_MAILBOX1 @ PFalconBase[0x00000044] {
- 31:0 value as u32;
+ 31:0 value => u32;
});
register!(NV_PFALCON_FALCON_RM @ PFalconBase[0x00000084] {
- 31:0 value as u32;
+ 31:0 value => u32;
});
register!(NV_PFALCON_FALCON_HWCFG2 @ PFalconBase[0x000000f4] {
- 10:10 riscv as bool;
- 12:12 mem_scrubbing as bool, "Set to 0 after memory scrubbing is
completed";
- 31:31 reset_ready as bool, "Signal indicating that reset is
completed (GA102+)";
+ 10:10 riscv => bool;
+ 12:12 mem_scrubbing => bool, "Set to 0 after memory scrubbing is
completed";
+ 31:31 reset_ready => bool, "Signal indicating that reset is
completed (GA102+)";
});
impl NV_PFALCON_FALCON_HWCFG2 {
@@ -229,101 +230,101 @@ pub(crate) fn mem_scrubbing_done(self) -> bool {
}
register!(NV_PFALCON_FALCON_CPUCTL @ PFalconBase[0x00000100] {
- 1:1 startcpu as bool;
- 4:4 halted as bool;
- 6:6 alias_en as bool;
+ 1:1 startcpu => bool;
+ 4:4 halted => bool;
+ 6:6 alias_en => bool;
});
register!(NV_PFALCON_FALCON_BOOTVEC @ PFalconBase[0x00000104] {
- 31:0 value as u32;
+ 31:0 value => u32;
});
register!(NV_PFALCON_FALCON_DMACTL @ PFalconBase[0x0000010c] {
- 0:0 require_ctx as bool;
- 1:1 dmem_scrubbing as bool;
- 2:2 imem_scrubbing as bool;
- 6:3 dmaq_num as u8;
- 7:7 secure_stat as bool;
+ 0:0 require_ctx => bool;
+ 1:1 dmem_scrubbing => bool;
+ 2:2 imem_scrubbing => bool;
+ 6:3 dmaq_num;
+ 7:7 secure_stat => bool;
});
register!(NV_PFALCON_FALCON_DMATRFBASE @ PFalconBase[0x00000110] {
- 31:0 base as u32;
+ 31:0 base => u32;
});
register!(NV_PFALCON_FALCON_DMATRFMOFFS @ PFalconBase[0x00000114] {
- 23:0 offs as u32;
+ 23:0 offs;
});
register!(NV_PFALCON_FALCON_DMATRFCMD @ PFalconBase[0x00000118] {
- 0:0 full as bool;
- 1:1 idle as bool;
- 3:2 sec as u8;
- 4:4 imem as bool;
- 5:5 is_write as bool;
- 10:8 size as u8 ?=> DmaTrfCmdSize;
- 14:12 ctxdma as u8;
- 16:16 set_dmtag as u8;
+ 0:0 full => bool;
+ 1:1 idle => bool;
+ 3:2 sec;
+ 4:4 imem => bool;
+ 5:5 is_write => bool;
+ 10:8 size ?=> DmaTrfCmdSize;
+ 14:12 ctxdma;
+ 16:16 set_dmtag;
});
register!(NV_PFALCON_FALCON_DMATRFFBOFFS @ PFalconBase[0x0000011c] {
- 31:0 offs as u32;
+ 31:0 offs => u32;
});
register!(NV_PFALCON_FALCON_DMATRFBASE1 @ PFalconBase[0x00000128] {
- 8:0 base as u16;
+ 8:0 base;
});
register!(NV_PFALCON_FALCON_HWCFG1 @ PFalconBase[0x0000012c] {
- 3:0 core_rev as u8 ?=> FalconCoreRev, "Core revision";
- 5:4 security_model as u8 ?=> FalconSecurityModel, "Security
model";
- 7:6 core_rev_subversion as u8 ?=> FalconCoreRevSubversion,
"Core revision subversion";
+ 3:0 core_rev ?=> FalconCoreRev, "Core revision";
+ 5:4 security_model ?=> FalconSecurityModel, "Security
model";
+ 7:6 core_rev_subversion => FalconCoreRevSubversion, "Core
revision subversion";
});
register!(NV_PFALCON_FALCON_CPUCTL_ALIAS @ PFalconBase[0x00000130] {
- 1:1 startcpu as bool;
+ 1:1 startcpu => bool;
});
// Actually known as `NV_PSEC_FALCON_ENGINE` and `NV_PGSP_FALCON_ENGINE`
depending on the falcon
// instance.
register!(NV_PFALCON_FALCON_ENGINE @ PFalconBase[0x000003c0] {
- 0:0 reset as bool;
+ 0:0 reset => bool;
});
register!(NV_PFALCON_FBIF_TRANSCFG @ PFalconBase[0x00000600[8]] {
- 1:0 target as u8 ?=> FalconFbifTarget;
- 2:2 mem_type as bool => FalconFbifMemType;
+ 1:0 target ?=> FalconFbifTarget;
+ 2:2 mem_type => FalconFbifMemType;
});
register!(NV_PFALCON_FBIF_CTL @ PFalconBase[0x00000624] {
- 7:7 allow_phys_no_ctx as bool;
+ 7:7 allow_phys_no_ctx => bool;
});
/* PFALCON2 */
register!(NV_PFALCON2_FALCON_MOD_SEL @ PFalcon2Base[0x00000180] {
- 7:0 algo as u8 ?=> FalconModSelAlgo;
+ 7:0 algo ?=> FalconModSelAlgo;
});
register!(NV_PFALCON2_FALCON_BROM_CURR_UCODE_ID @ PFalcon2Base[0x00000198] {
- 7:0 ucode_id as u8;
+ 7:0 ucode_id => u8;
});
register!(NV_PFALCON2_FALCON_BROM_ENGIDMASK @ PFalcon2Base[0x0000019c] {
- 31:0 value as u32;
+ 31:0 value => u32;
});
// OpenRM defines this as a register array, but doesn't specify its size
and only uses its first
// element. Be conservative until we know the actual size or need to use more
registers.
register!(NV_PFALCON2_FALCON_BROM_PARAADDR @ PFalcon2Base[0x00000210[1]] {
- 31:0 value as u32;
+ 31:0 value => u32;
});
// PRISCV
register!(NV_PRISCV_RISCV_BCR_CTRL @ PFalconBase[0x00001668] {
- 0:0 valid as bool;
- 4:4 core_select as bool => PeregrineCoreSelect;
- 8:8 br_fetch as bool;
+ 0:0 valid => bool;
+ 4:4 core_select => PeregrineCoreSelect;
+ 8:8 br_fetch => bool;
});
// The modules below provide registers that are not identical on all supported
chips. They should
@@ -333,7 +334,7 @@ pub(crate) mod gm107 {
// FUSE
register!(NV_FUSE_STATUS_OPT_DISPLAY @ 0x00021c04 {
- 0:0 display_disabled as bool;
+ 0:0 display_disabled => bool;
});
}
@@ -341,6 +342,6 @@ pub(crate) mod ga100 {
// FUSE
register!(NV_FUSE_STATUS_OPT_DISPLAY @ 0x00820c04 {
- 0:0 display_disabled as bool;
+ 0:0 display_disabled => bool;
});
}
diff --git a/drivers/gpu/nova-core/regs/macros.rs
b/drivers/gpu/nova-core/regs/macros.rs
index 73811a115762..54c7f6fc746b 100644
--- a/drivers/gpu/nova-core/regs/macros.rs
+++ b/drivers/gpu/nova-core/regs/macros.rs
@@ -398,12 +398,9 @@ fn from(reg: $name) -> u32 {
register!(@fields_dispatcher $name { $($fields)* });
};
- // Captures the fields and passes them to all the implementers that require
field information.
- //
- // Used to simplify the matching rules for implementers, so they don't
need to match the entire
- // complex fields rule even though they only make use of part of it.
+ // Dispatch fields for the bounded integers syntax.
(@fields_dispatcher $name:ident {
- $($hi:tt:$lo:tt $field:ident as $type:tt
+ $($hi:tt:$lo:tt $field:ident
$(?=> $try_into_type:ty)?
$(=> $into_type:ty)?
$(, $comment:literal)?
@@ -411,123 +408,25 @@ fn from(reg: $name) -> u32 {
)*
}
) => {
- register!(@field_accessors $name {
- $(
- $hi:$lo $field as $type
- $(?=> $try_into_type)?
- $(=> $into_type)?
- $(, $comment)?
- ;
- )*
- });
- register!(@debug $name { $($field;)* });
- register!(@default $name { $($field;)* });
- };
-
- // Defines all the field getter/methods methods for `$name`.
- (
- @field_accessors $name:ident {
- $($hi:tt:$lo:tt $field:ident as $type:tt
- $(?=> $try_into_type:ty)?
- $(=> $into_type:ty)?
- $(, $comment:literal)?
- ;
- )*
- }
- ) => {
- $(
- register!(@check_field_bounds $hi:$lo $field as $type);
- )*
-
#[allow(dead_code)]
impl $name {
- $(
- register!(@field_accessor $name $hi:$lo $field as $type
- $(?=> $try_into_type)?
- $(=> $into_type)?
- $(, $comment)?
- ;
- );
- )*
- }
- };
-
- // Boolean fields must have `$hi == $lo`.
- (@check_field_bounds $hi:tt:$lo:tt $field:ident as bool) => {
- #[allow(clippy::eq_op)]
- const _: () = {
- ::kernel::build_assert!(
- $hi == $lo,
- concat!("boolean field `", stringify!($field),
"` covers more than one bit")
- );
- };
- };
-
- // Non-boolean fields must have `$hi >= $lo`.
- (@check_field_bounds $hi:tt:$lo:tt $field:ident as $type:tt) => {
- #[allow(clippy::eq_op)]
- const _: () = {
- ::kernel::build_assert!(
- $hi >= $lo,
- concat!("field `", stringify!($field), "`'s
MSB is smaller than its LSB")
- );
- };
- };
-
- // Catches fields defined as `bool` and convert them into a boolean value.
- (
- @field_accessor $name:ident $hi:tt:$lo:tt $field:ident as bool =>
$into_type:ty
- $(, $comment:literal)?;
- ) => {
- register!(
- @leaf_accessor $name $hi:$lo $field
- { |f| <$into_type>::from(if f != 0 { true } else { false }) }
- bool $into_type => $into_type $(, $comment)?;
+ $(
+ register!(@private_field_accessors $name $hi:$lo $field);
+ register!(@public_field_accessors $name $hi:$lo $field
+ $(?=> $try_into_type)?
+ $(=> $into_type)?
+ $(, $comment)?
);
+ )*
+ }
+
+ register!(@debug $name { $($field;)* });
+ register!(@default $name { $($field;)* });
+
};
- // Shortcut for fields defined as `bool` without the `=>` syntax.
(
- @field_accessor $name:ident $hi:tt:$lo:tt $field:ident as bool $(,
$comment:literal)?;
- ) => {
- register!(@field_accessor $name $hi:$lo $field as bool => bool $(,
$comment)?;);
- };
-
- // Catches the `?=>` syntax for non-boolean fields.
- (
- @field_accessor $name:ident $hi:tt:$lo:tt $field:ident as $type:tt
?=> $try_into_type:ty
- $(, $comment:literal)?;
- ) => {
- register!(@leaf_accessor $name $hi:$lo $field
- { |f| <$try_into_type>::try_from(f as $type) } $type
$try_into_type =>
- ::core::result::Result<
- $try_into_type,
- <$try_into_type as
::core::convert::TryFrom<$type>>::Error
- >
- $(, $comment)?;);
- };
-
- // Catches the `=>` syntax for non-boolean fields.
- (
- @field_accessor $name:ident $hi:tt:$lo:tt $field:ident as $type:tt
=> $into_type:ty
- $(, $comment:literal)?;
- ) => {
- register!(@leaf_accessor $name $hi:$lo $field
- { |f| <$into_type>::from(f as $type) } $type $into_type =>
$into_type $(, $comment)?;);
- };
-
- // Shortcut for non-boolean fields defined without the `=>` or `?=>`
syntax.
- (
- @field_accessor $name:ident $hi:tt:$lo:tt $field:ident as $type:tt
- $(, $comment:literal)?;
- ) => {
- register!(@field_accessor $name $hi:$lo $field as $type => $type $(,
$comment)?;);
- };
-
- // Generates the accessor methods for a single field.
- (
- @leaf_accessor $name:ident $hi:tt:$lo:tt $field:ident
- { $process:expr } $prim_type:tt $to_type:ty => $res_type:ty $(,
$comment:literal)?;
+ @private_field_accessors $name:ident $hi:tt:$lo:tt $field:ident
) => {
::kernel::macros::paste!(
const [<$field:upper _RANGE>]:
::core::ops::RangeInclusive<u8> = $lo..=$hi;
@@ -535,38 +434,135 @@ impl $name {
const [<$field:upper _SHIFT>]: u32 = Self::[<$field:upper
_MASK>].trailing_zeros();
);
- $(
- #[doc="Returns the value of this field:"]
- #[doc=$comment]
- )?
- #[inline(always)]
- pub(crate) fn $field(self) -> $res_type {
- ::kernel::macros::paste!(
+ ::kernel::macros::paste!(
+ fn [<$field _internal>](self) ->
+ ::kernel::num::BoundedInt<u32, { $hi + 1 - $lo }> {
const MASK: u32 = $name::[<$field:upper _MASK>];
const SHIFT: u32 = $name::[<$field:upper _SHIFT>];
+ // Ensure the returned type has the same width as the field.
+ ::kernel::static_assert!(
+ MASK >> SHIFT == <u32 as ::kernel::num::Boundable<{
$hi + 1 - $lo }>>::MASK
);
+
let field = ((self.0 & MASK) >> SHIFT);
- $process(field)
+ ::kernel::num::BoundedInt::<u32, { $hi + 1 - $lo
}>::new(field)
}
- ::kernel::macros::paste!(
- $(
- #[doc="Sets the value of this field:"]
- #[doc=$comment]
- )?
- #[inline(always)]
- pub(crate) fn [<set_ $field>](mut self, value: $to_type) ->
Self {
+ fn [<set_ $field _internal>](
+ mut self,
+ value: ::kernel::num::BoundedInt<u32, { $hi + 1 - $lo }>,
+ ) -> Self
+ {
const MASK: u32 = $name::[<$field:upper _MASK>];
const SHIFT: u32 = $name::[<$field:upper _SHIFT>];
- let value = (u32::from($prim_type::from(value)) << SHIFT)
& MASK;
+ // Ensure the returned type has the same width as the field.
+ ::kernel::static_assert!(
+ MASK >> SHIFT == <u32 as ::kernel::num::Boundable<{
$hi + 1 - $lo }>>::MASK
+ );
+
+ let value = (value.get() << SHIFT) & MASK;
self.0 = (self.0 & !MASK) | value;
self
}
+
+ fn [<try_set_ $field _internal>]<T>(
+ mut self,
+ value: T,
+ ) -> ::kernel::error::Result<Self>
+ where T: ::kernel::num::TryIntoBounded<u32, { $hi + 1 - $lo
}>,
+ {
+ const MASK: u32 = $name::[<$field:upper _MASK>];
+ const SHIFT: u32 = $name::[<$field:upper _SHIFT>];
+ // Ensure the returned type has the same width as the field.
+ ::kernel::static_assert!(
+ MASK >> SHIFT == <u32 as ::kernel::num::Boundable<{
$hi + 1 - $lo }>>::MASK
+ );
+ let value = value.try_into()?;
+
+ let value = (value.get() << SHIFT) & MASK;
+ self.0 = (self.0 & !MASK) | value;
+
+ Ok(self)
+ }
);
};
+ // Generates the public accessors for fields infallibly (`=>`) converted
to a type.
+ (
+ @public_field_accessors $name:ident $hi:tt:$lo:tt $field:ident =>
$into_type:ty
+ $(, $comment:literal)?
+ ) => {
+ ::kernel::macros::paste!(
+ pub(crate) fn $field(self) -> $into_type
+ {
+ self.[<$field _internal>]().into()
+ }
+
+ pub(crate) fn [<set_ $field>](self, value: $into_type) -> Self
+ {
+ self.[<set_ $field _internal>](value.into())
+ }
+ );
+ };
+
+ // Generates the public accessors for fields fallibly (`?=>`) converted
to a type.
+ (
+ @public_field_accessors $name:ident $hi:tt:$lo:tt $field:ident ?=>
$try_into_type:ty
+ $(, $comment:literal)?
+ ) => {
+ ::kernel::macros::paste!(
+ pub(crate) fn $field(self) ->
+ Result<
+ $try_into_type,
+ <$try_into_type as ::core::convert::TryFrom<
+ ::kernel::num::BoundedInt<u32, { $hi + 1 - $lo }>
+ >>::Error
+ >
+ {
+ self.[<$field _internal>]().try_into()
+ }
+
+ pub(crate) fn [<set_ $field>](self, value: $try_into_type) ->
Self
+ {
+ self.[<set_ $field _internal>](value.into())
+ }
+ );
+ };
+
+ // Generates the public accessors for fields not converted to a type.
+ (
+ @public_field_accessors $name:ident $hi:tt:$lo:tt $field:ident $(,
$comment:literal)?
+ ) => {
+ ::kernel::macros::paste!(
+ pub(crate) fn $field(self) ->
+ ::kernel::num::BoundedInt<u32, { $hi + 1 - $lo }>
+ {
+ self.[<$field _internal>]()
+ }
+
+ pub(crate) fn [<set_ $field>]<T>(
+ self,
+ value: T,
+ ) -> Self
+ where T: Into<::kernel::num::BoundedInt<u32, { $hi + 1 - $lo
}>>,
+ {
+ self.[<set_ $field _internal>](value.into())
+ }
+
+ pub(crate) fn [<try_set_ $field>]<T>(
+ self,
+ value: T,
+ ) -> ::kernel::error::Result<Self>
+ where T: ::kernel::num::TryIntoBounded<u32, { $hi + 1 - $lo
}>,
+ {
+ Ok(self.[<set_ $field _internal>](value.try_into()?))
+ }
+ );
+ };
+
+
// Generates the `Debug` implementation for `$name`.
(@debug $name:ident { $($field:ident;)* }) => {
impl ::core::fmt::Debug for $name {
@@ -582,6 +578,8 @@ fn fmt(&self, f: &mut
::core::fmt::Formatter<'_>) -> ::core::fmt::Result {
};
// Generates the `Default` implementation for `$name`.
+ // TODO: hack - we should not use the internal method. Maybe add private
methods returning the
+ // defaults value for each field?
(@default $name:ident { $($field:ident;)* }) => {
/// Returns a value for the register where all fields are set to their
default value.
impl ::core::default::Default for $name {
@@ -591,7 +589,7 @@ fn default() -> Self {
::kernel::macros::paste!(
$(
- value.[<set_ $field>](Default::default());
+ value.[<set_ $field _internal>](Default::default());
)*
);
--
2.51.0