Alexandre Courbot
2025-Jul-18 07:26 UTC
[PATCH v2 15/19] gpu: nova-core: register: redesign relative registers
The relative registers are currently very unsafe to use: callers can specify any constant as the base address for access, meaning they can effectively interpret any I/O address as any relative register. Ideally, valid base addresses for a family of registers should be explicitly defined in the code, and could only be used with the relevant registers This patch changes the relative register declaration into this: register!(REGISTER_NAME @ BaseTrait[offset] ... Where `BaseTrait` is the name of a ZST used as a parameter of the `RegisterBase<>` trait to define a trait unique to a class of register. This specialized trait is then implemented for every type that provides a valid base address, enabling said types to be passed as the base address provider for the register's I/O accessor methods. This design thus makes it impossible to pass an unexpected base address to a relative register, and, since the valid bases are all known at compile-time, also guarantees that all I/O accesses are done within the valid bounds of the I/O range. Signed-off-by: Alexandre Courbot <acourbot at nvidia.com> --- Documentation/gpu/nova/core/todo.rst | 1 - drivers/gpu/nova-core/falcon.rs | 67 +++++++------ drivers/gpu/nova-core/falcon/gsp.rs | 12 ++- drivers/gpu/nova-core/falcon/hal/ga102.rs | 14 +-- drivers/gpu/nova-core/falcon/sec2.rs | 9 +- drivers/gpu/nova-core/regs.rs | 50 +++++----- drivers/gpu/nova-core/regs/macros.rs | 156 ++++++++++++++++++++++++------ 7 files changed, 212 insertions(+), 97 deletions(-) diff --git a/Documentation/gpu/nova/core/todo.rst b/Documentation/gpu/nova/core/todo.rst index 894a1e9c3741a43ad4eb76d24a9486862999874e..a1d12c1b289d89251d914fc271b7243ced11d487 100644 --- a/Documentation/gpu/nova/core/todo.rst +++ b/Documentation/gpu/nova/core/todo.rst @@ -131,7 +131,6 @@ crate so it can be used by other components as well. Features desired before this happens: -* Relative register with build-time base address validation, * Arrays of registers with build-time index validation, * Make I/O optional I/O (for field values that are not registers), * Support other sizes than `u32`, diff --git a/drivers/gpu/nova-core/falcon.rs b/drivers/gpu/nova-core/falcon.rs index 50437c67c14a89b6974a121d4408efbcdcb3fdd0..67265a0b5d7b481bbe4c536e533840195207b4bb 100644 --- a/drivers/gpu/nova-core/falcon.rs +++ b/drivers/gpu/nova-core/falcon.rs @@ -14,6 +14,7 @@ use crate::driver::Bar0; use crate::gpu::Chipset; use crate::regs; +use crate::regs::macros::RegisterBase; use crate::util; pub(crate) mod gsp; @@ -274,10 +275,16 @@ fn from(value: bool) -> Self { } } -/// Trait defining the parameters of a given Falcon instance. -pub(crate) trait FalconEngine: Sync { - /// Base I/O address for the falcon, relative from which its registers are accessed. - const BASE: usize; +/// Type used to represent the `PFALCON` registers address base for a given falcon engine. +pub(crate) struct PFalconBase(()); + +/// Trait defining the parameters of a given Falcon engine. +/// +/// Each engine provides one base for `PFALCON` and `PFALCON2` registers. The `ID` constant is used +/// to identify a given Falcon instance with register I/O methods. +pub(crate) trait FalconEngine: Sync + RegisterBase<PFalconBase> + Sized { + /// Singleton of the engine, used to identify it with register I/O methods. + const ID: Self; } /// Represents a portion of the firmware to be loaded into a particular memory (e.g. IMEM or DMEM). @@ -343,13 +350,13 @@ pub(crate) fn new( bar: &Bar0, need_riscv: bool, ) -> Result<Self> { - let hwcfg1 = regs::NV_PFALCON_FALCON_HWCFG1::read(bar, E::BASE); + let hwcfg1 = regs::NV_PFALCON_FALCON_HWCFG1::read(bar, &E::ID); // Check that the revision and security model contain valid values. let _ = hwcfg1.core_rev()?; let _ = hwcfg1.security_model()?; if need_riscv { - let hwcfg2 = regs::NV_PFALCON_FALCON_HWCFG2::read(bar, E::BASE); + let hwcfg2 = regs::NV_PFALCON_FALCON_HWCFG2::read(bar, &E::ID); if !hwcfg2.riscv() { dev_err!( dev, @@ -369,7 +376,7 @@ pub(crate) fn new( fn reset_wait_mem_scrubbing(&self, bar: &Bar0) -> Result { // TIMEOUT: memory scrubbing should complete in less than 20ms. util::wait_on(Delta::from_millis(20), || { - if regs::NV_PFALCON_FALCON_HWCFG2::read(bar, E::BASE).mem_scrubbing_done() { + if regs::NV_PFALCON_FALCON_HWCFG2::read(bar, &E::ID).mem_scrubbing_done() { Some(()) } else { None @@ -379,12 +386,12 @@ fn reset_wait_mem_scrubbing(&self, bar: &Bar0) -> Result { /// Reset the falcon engine. fn reset_eng(&self, bar: &Bar0) -> Result { - let _ = regs::NV_PFALCON_FALCON_HWCFG2::read(bar, E::BASE); + let _ = regs::NV_PFALCON_FALCON_HWCFG2::read(bar, &E::ID); // According to OpenRM's `kflcnPreResetWait_GA102` documentation, HW sometimes does not set // RESET_READY so a non-failing timeout is used. let _ = util::wait_on(Delta::from_micros(150), || { - let r = regs::NV_PFALCON_FALCON_HWCFG2::read(bar, E::BASE); + let r = regs::NV_PFALCON_FALCON_HWCFG2::read(bar, &E::ID); if r.reset_ready() { Some(()) } else { @@ -392,13 +399,13 @@ fn reset_eng(&self, bar: &Bar0) -> Result { } }); - regs::NV_PFALCON_FALCON_ENGINE::alter(bar, E::BASE, |v| v.set_reset(true)); + regs::NV_PFALCON_FALCON_ENGINE::alter(bar, &E::ID, |v| v.set_reset(true)); // TODO[DLAY]: replace with udelay() or equivalent once available. // TIMEOUT: falcon engine should not take more than 10us to reset. let _: Result = util::wait_on(Delta::from_micros(10), || None); - regs::NV_PFALCON_FALCON_ENGINE::alter(bar, E::BASE, |v| v.set_reset(false)); + regs::NV_PFALCON_FALCON_ENGINE::alter(bar, &E::ID, |v| v.set_reset(false)); self.reset_wait_mem_scrubbing(bar)?; @@ -413,7 +420,7 @@ pub(crate) fn reset(&self, bar: &Bar0) -> Result { regs::NV_PFALCON_FALCON_RM::default() .set_value(regs::NV_PMC_BOOT_0::read(bar).into()) - .write(bar, E::BASE); + .write(bar, &E::ID); Ok(()) } @@ -464,10 +471,10 @@ fn dma_wr<F: FalconFirmware<Target = E>>( regs::NV_PFALCON_FALCON_DMATRFBASE::default() .set_base((dma_start >> 8) as u32) - .write(bar, E::BASE); + .write(bar, &E::ID); regs::NV_PFALCON_FALCON_DMATRFBASE1::default() .set_base((dma_start >> 40) as u16) - .write(bar, E::BASE); + .write(bar, &E::ID); let cmd = regs::NV_PFALCON_FALCON_DMATRFCMD::default() .set_size(DmaTrfCmdSize::Size256B) @@ -478,17 +485,17 @@ fn dma_wr<F: FalconFirmware<Target = E>>( // Perform a transfer of size `DMA_LEN`. regs::NV_PFALCON_FALCON_DMATRFMOFFS::default() .set_offs(load_offsets.dst_start + pos) - .write(bar, E::BASE); + .write(bar, &E::ID); regs::NV_PFALCON_FALCON_DMATRFFBOFFS::default() .set_offs(src_start + pos) - .write(bar, E::BASE); - cmd.write(bar, E::BASE); + .write(bar, &E::ID); + cmd.write(bar, &E::ID); // Wait for the transfer to complete. // TIMEOUT: arbitrarily large value, no DMA transfer to the falcon's small memories // should ever take that long. util::wait_on(Delta::from_secs(2), || { - let r = regs::NV_PFALCON_FALCON_DMATRFCMD::read(bar, E::BASE); + let r = regs::NV_PFALCON_FALCON_DMATRFCMD::read(bar, &E::ID); if r.idle() { Some(()) } else { @@ -502,9 +509,9 @@ fn dma_wr<F: FalconFirmware<Target = E>>( /// Perform a DMA load into `IMEM` and `DMEM` of `fw`, and prepare the falcon to run it. pub(crate) fn dma_load<F: FalconFirmware<Target = E>>(&self, bar: &Bar0, fw: &F) -> Result { - regs::NV_PFALCON_FBIF_CTL::alter(bar, E::BASE, |v| v.set_allow_phys_no_ctx(true)); - regs::NV_PFALCON_FALCON_DMACTL::default().write(bar, E::BASE); - regs::NV_PFALCON_FBIF_TRANSCFG::alter(bar, E::BASE, |v| { + regs::NV_PFALCON_FBIF_CTL::alter(bar, &E::ID, |v| v.set_allow_phys_no_ctx(true)); + regs::NV_PFALCON_FALCON_DMACTL::default().write(bar, &E::ID); + regs::NV_PFALCON_FBIF_TRANSCFG::alter(bar, &E::ID, |v| { v.set_target(FalconFbifTarget::CoherentSysmem) .set_mem_type(FalconFbifMemType::Physical) }); @@ -517,7 +524,7 @@ pub(crate) fn dma_load<F: FalconFirmware<Target = E>>(&self, bar: &Bar0, fw: &F) // Set `BootVec` to start of non-secure code. regs::NV_PFALCON_FALCON_BOOTVEC::default() .set_value(fw.boot_addr()) - .write(bar, E::BASE); + .write(bar, &E::ID); Ok(()) } @@ -538,27 +545,27 @@ pub(crate) fn boot( if let Some(mbox0) = mbox0 { regs::NV_PFALCON_FALCON_MAILBOX0::default() .set_value(mbox0) - .write(bar, E::BASE); + .write(bar, &E::ID); } if let Some(mbox1) = mbox1 { regs::NV_PFALCON_FALCON_MAILBOX1::default() .set_value(mbox1) - .write(bar, E::BASE); + .write(bar, &E::ID); } - match regs::NV_PFALCON_FALCON_CPUCTL::read(bar, E::BASE).alias_en() { + match regs::NV_PFALCON_FALCON_CPUCTL::read(bar, &E::ID).alias_en() { true => regs::NV_PFALCON_FALCON_CPUCTL_ALIAS::default() .set_startcpu(true) - .write(bar, E::BASE), + .write(bar, &E::ID), false => regs::NV_PFALCON_FALCON_CPUCTL::default() .set_startcpu(true) - .write(bar, E::BASE), + .write(bar, &E::ID), } // TIMEOUT: arbitrarily large value, firmwares should complete in less than 2 seconds. util::wait_on(Delta::from_secs(2), || { - let r = regs::NV_PFALCON_FALCON_CPUCTL::read(bar, E::BASE); + let r = regs::NV_PFALCON_FALCON_CPUCTL::read(bar, &E::ID); if r.halted() { Some(()) } else { @@ -567,8 +574,8 @@ pub(crate) fn boot( })?; let (mbox0, mbox1) = ( - regs::NV_PFALCON_FALCON_MAILBOX0::read(bar, E::BASE).value(), - regs::NV_PFALCON_FALCON_MAILBOX1::read(bar, E::BASE).value(), + regs::NV_PFALCON_FALCON_MAILBOX0::read(bar, &E::ID).value(), + regs::NV_PFALCON_FALCON_MAILBOX1::read(bar, &E::ID).value(), ); Ok((mbox0, mbox1)) diff --git a/drivers/gpu/nova-core/falcon/gsp.rs b/drivers/gpu/nova-core/falcon/gsp.rs index d622e9a64470932af0b48032be5a1d4b518bf4a7..0db9f94036a6a7ced5a461aec2cff2ce246a5e0e 100644 --- a/drivers/gpu/nova-core/falcon/gsp.rs +++ b/drivers/gpu/nova-core/falcon/gsp.rs @@ -2,23 +2,27 @@ use crate::{ driver::Bar0, - falcon::{Falcon, FalconEngine}, - regs, + falcon::{Falcon, FalconEngine, PFalconBase}, + regs::{self, macros::RegisterBase}, }; /// Type specifying the `Gsp` falcon engine. Cannot be instantiated. pub(crate) struct Gsp(()); -impl FalconEngine for Gsp { +impl RegisterBase<PFalconBase> for Gsp { const BASE: usize = 0x00110000; } +impl FalconEngine for Gsp { + const ID: Self = Gsp(()); +} + impl Falcon<Gsp> { /// Clears the SWGEN0 bit in the Falcon's IRQ status clear register to /// allow GSP to signal CPU for processing new messages in message queue. pub(crate) fn clear_swgen0_intr(&self, bar: &Bar0) { regs::NV_PFALCON_FALCON_IRQSCLR::default() .set_swgen0(true) - .write(bar, Gsp::BASE); + .write(bar, &Gsp::ID); } } diff --git a/drivers/gpu/nova-core/falcon/hal/ga102.rs b/drivers/gpu/nova-core/falcon/hal/ga102.rs index 52c33d3f22a8e920742b45940c346c47fdc70e93..3fdacd19322dd122eb00e245de4be8d1edd61a5f 100644 --- a/drivers/gpu/nova-core/falcon/hal/ga102.rs +++ b/drivers/gpu/nova-core/falcon/hal/ga102.rs @@ -16,15 +16,15 @@ use super::FalconHal; fn select_core_ga102<E: FalconEngine>(bar: &Bar0) -> Result { - let bcr_ctrl = regs::NV_PRISCV_RISCV_BCR_CTRL::read(bar, E::BASE); + let bcr_ctrl = regs::NV_PRISCV_RISCV_BCR_CTRL::read(bar, &E::ID); if bcr_ctrl.core_select() != PeregrineCoreSelect::Falcon { regs::NV_PRISCV_RISCV_BCR_CTRL::default() .set_core_select(PeregrineCoreSelect::Falcon) - .write(bar, E::BASE); + .write(bar, &E::ID); // TIMEOUT: falcon core should take less than 10ms to report being enabled. util::wait_on(Delta::from_millis(10), || { - let r = regs::NV_PRISCV_RISCV_BCR_CTRL::read(bar, E::BASE); + let r = regs::NV_PRISCV_RISCV_BCR_CTRL::read(bar, &E::ID); if r.valid() { Some(()) } else { @@ -76,16 +76,16 @@ fn signature_reg_fuse_version_ga102( fn program_brom_ga102<E: FalconEngine>(bar: &Bar0, params: &FalconBromParams) -> Result { regs::NV_PFALCON2_FALCON_BROM_PARAADDR::default() .set_value(params.pkc_data_offset) - .write(bar, E::BASE); + .write(bar, &E::ID); regs::NV_PFALCON2_FALCON_BROM_ENGIDMASK::default() .set_value(u32::from(params.engine_id_mask)) - .write(bar, E::BASE); + .write(bar, &E::ID); regs::NV_PFALCON2_FALCON_BROM_CURR_UCODE_ID::default() .set_ucode_id(params.ucode_id) - .write(bar, E::BASE); + .write(bar, &E::ID); regs::NV_PFALCON2_FALCON_MOD_SEL::default() .set_algo(FalconModSelAlgo::Rsa3k) - .write(bar, E::BASE); + .write(bar, &E::ID); Ok(()) } diff --git a/drivers/gpu/nova-core/falcon/sec2.rs b/drivers/gpu/nova-core/falcon/sec2.rs index 5147d9e2a7fe859210727504688d84cca4de991b..dbc486a712ffce30efa3a4264b0757974962302e 100644 --- a/drivers/gpu/nova-core/falcon/sec2.rs +++ b/drivers/gpu/nova-core/falcon/sec2.rs @@ -1,10 +1,15 @@ // SPDX-License-Identifier: GPL-2.0 -use crate::falcon::FalconEngine; +use crate::falcon::{FalconEngine, PFalconBase}; +use crate::regs::macros::RegisterBase; /// Type specifying the `Sec2` falcon engine. Cannot be instantiated. pub(crate) struct Sec2(()); -impl FalconEngine for Sec2 { +impl RegisterBase<PFalconBase> for Sec2 { const BASE: usize = 0x00840000; } + +impl FalconEngine for Sec2 { + const ID: Self = Sec2(()); +} diff --git a/drivers/gpu/nova-core/regs.rs b/drivers/gpu/nova-core/regs.rs index 2df784f704d57b6ef31486afa0121c5cd83bb8b9..7a15f391c52c9d0ba3c89094af48998bda82e25e 100644 --- a/drivers/gpu/nova-core/regs.rs +++ b/drivers/gpu/nova-core/regs.rs @@ -5,11 +5,11 @@ #![allow(non_camel_case_types)] #[macro_use] -mod macros; +pub(crate) mod macros; use crate::falcon::{ DmaTrfCmdSize, FalconCoreRev, FalconCoreRevSubversion, FalconFbifMemType, FalconFbifTarget, - FalconModSelAlgo, FalconSecurityModel, PeregrineCoreSelect, + FalconModSelAlgo, FalconSecurityModel, PFalconBase, PeregrineCoreSelect, }; use crate::gpu::{Architecture, Chipset}; use kernel::prelude::*; @@ -194,24 +194,24 @@ pub(crate) fn vga_workspace_addr(self) -> Option<u64> { // PFALCON -register!(NV_PFALCON_FALCON_IRQSCLR @ +0x00000004 { +register!(NV_PFALCON_FALCON_IRQSCLR @ PFalconBase[0x00000004] { 4:4 halt as bool; 6:6 swgen0 as bool; }); -register!(NV_PFALCON_FALCON_MAILBOX0 @ +0x00000040 { +register!(NV_PFALCON_FALCON_MAILBOX0 @ PFalconBase[0x00000040] { 31:0 value as u32; }); -register!(NV_PFALCON_FALCON_MAILBOX1 @ +0x00000044 { +register!(NV_PFALCON_FALCON_MAILBOX1 @ PFalconBase[0x00000044] { 31:0 value as u32; }); -register!(NV_PFALCON_FALCON_RM @ +0x00000084 { +register!(NV_PFALCON_FALCON_RM @ PFalconBase[0x00000084] { 31:0 value as u32; }); -register!(NV_PFALCON_FALCON_HWCFG2 @ +0x000000f4 { +register!(NV_PFALCON_FALCON_HWCFG2 @ PFalconBase[0x000000f4] { 10:10 riscv as bool; 12:12 mem_scrubbing as bool, "Set to 0 after memory scrubbing is completed"; 31:31 reset_ready as bool, "Signal indicating that reset is completed (GA102+)"; @@ -224,17 +224,17 @@ pub(crate) fn mem_scrubbing_done(self) -> bool { } } -register!(NV_PFALCON_FALCON_CPUCTL @ +0x00000100 { +register!(NV_PFALCON_FALCON_CPUCTL @ PFalconBase[0x00000100] { 1:1 startcpu as bool; 4:4 halted as bool; 6:6 alias_en as bool; }); -register!(NV_PFALCON_FALCON_BOOTVEC @ +0x00000104 { +register!(NV_PFALCON_FALCON_BOOTVEC @ PFalconBase[0x00000104] { 31:0 value as u32; }); -register!(NV_PFALCON_FALCON_DMACTL @ +0x0000010c { +register!(NV_PFALCON_FALCON_DMACTL @ PFalconBase[0x0000010c] { 0:0 require_ctx as bool; 1:1 dmem_scrubbing as bool; 2:2 imem_scrubbing as bool; @@ -242,15 +242,15 @@ pub(crate) fn mem_scrubbing_done(self) -> bool { 7:7 secure_stat as bool; }); -register!(NV_PFALCON_FALCON_DMATRFBASE @ +0x00000110 { +register!(NV_PFALCON_FALCON_DMATRFBASE @ PFalconBase[0x00000110] { 31:0 base as u32; }); -register!(NV_PFALCON_FALCON_DMATRFMOFFS @ +0x00000114 { +register!(NV_PFALCON_FALCON_DMATRFMOFFS @ PFalconBase[0x00000114] { 23:0 offs as u32; }); -register!(NV_PFALCON_FALCON_DMATRFCMD @ +0x00000118 { +register!(NV_PFALCON_FALCON_DMATRFCMD @ PFalconBase[0x00000118] { 0:0 full as bool; 1:1 idle as bool; 3:2 sec as u8; @@ -261,60 +261,60 @@ pub(crate) fn mem_scrubbing_done(self) -> bool { 16:16 set_dmtag as u8; }); -register!(NV_PFALCON_FALCON_DMATRFFBOFFS @ +0x0000011c { +register!(NV_PFALCON_FALCON_DMATRFFBOFFS @ PFalconBase[0x0000011c] { 31:0 offs as u32; }); -register!(NV_PFALCON_FALCON_DMATRFBASE1 @ +0x00000128 { +register!(NV_PFALCON_FALCON_DMATRFBASE1 @ PFalconBase[0x00000128] { 8:0 base as u16; }); -register!(NV_PFALCON_FALCON_HWCFG1 @ +0x0000012c { +register!(NV_PFALCON_FALCON_HWCFG1 @ PFalconBase[0x0000012c] { 3:0 core_rev as u8 ?=> FalconCoreRev, "Core revision"; 5:4 security_model as u8 ?=> FalconSecurityModel, "Security model"; 7:6 core_rev_subversion as u8 ?=> FalconCoreRevSubversion, "Core revision subversion"; }); -register!(NV_PFALCON_FALCON_CPUCTL_ALIAS @ +0x00000130 { +register!(NV_PFALCON_FALCON_CPUCTL_ALIAS @ PFalconBase[0x00000130] { 1:1 startcpu as bool; }); // Actually known as `NV_PSEC_FALCON_ENGINE` and `NV_PGSP_FALCON_ENGINE` depending on the falcon // instance. -register!(NV_PFALCON_FALCON_ENGINE @ +0x000003c0 { +register!(NV_PFALCON_FALCON_ENGINE @ PFalconBase[0x000003c0] { 0:0 reset as bool; }); // TODO[REGA]: this is an array of registers. -register!(NV_PFALCON_FBIF_TRANSCFG @ +0x00000600 { +register!(NV_PFALCON_FBIF_TRANSCFG @ PFalconBase[0x00000600] { 1:0 target as u8 ?=> FalconFbifTarget; 2:2 mem_type as bool => FalconFbifMemType; }); -register!(NV_PFALCON_FBIF_CTL @ +0x00000624 { +register!(NV_PFALCON_FBIF_CTL @ PFalconBase[0x00000624] { 7:7 allow_phys_no_ctx as bool; }); -register!(NV_PFALCON2_FALCON_MOD_SEL @ +0x00001180 { +register!(NV_PFALCON2_FALCON_MOD_SEL @ PFalconBase[0x00001180] { 7:0 algo as u8 ?=> FalconModSelAlgo; }); -register!(NV_PFALCON2_FALCON_BROM_CURR_UCODE_ID @ +0x00001198 { +register!(NV_PFALCON2_FALCON_BROM_CURR_UCODE_ID @ PFalconBase[0x00001198] { 7:0 ucode_id as u8; }); -register!(NV_PFALCON2_FALCON_BROM_ENGIDMASK @ +0x0000119c { +register!(NV_PFALCON2_FALCON_BROM_ENGIDMASK @ PFalconBase[0x0000119c] { 31:0 value as u32; }); // TODO[REGA]: this is an array of registers. -register!(NV_PFALCON2_FALCON_BROM_PARAADDR @ +0x00001210 { +register!(NV_PFALCON2_FALCON_BROM_PARAADDR @ PFalconBase[0x00001210] { 31:0 value as u32; }); // PRISCV -register!(NV_PRISCV_RISCV_BCR_CTRL @ +0x00001668 { +register!(NV_PRISCV_RISCV_BCR_CTRL @ PFalconBase[0x00001668] { 0:0 valid as bool; 4:4 core_select as bool => PeregrineCoreSelect; 8:8 br_fetch as bool; diff --git a/drivers/gpu/nova-core/regs/macros.rs b/drivers/gpu/nova-core/regs/macros.rs index a9f754056c3521b2a288f34bf3d78ec56db53451..3465fb302ce921ca995ecbb71b83efe1c9a62a1d 100644 --- a/drivers/gpu/nova-core/regs/macros.rs +++ b/drivers/gpu/nova-core/regs/macros.rs @@ -10,6 +10,16 @@ //! dedicated type for each register. Each such type comes with its own field accessors that can //! return an error if a field's value is invalid. +/// Trait providing a base address to be added to the offset of a relative register to obtain +/// its actual offset. +/// +/// The `T` generic argument is used to distinguish which base to use, in case a type provides +/// several bases. It is given to the `register!` macro to restrict the use of the register to +/// implementors of this particular variant. +pub(crate) trait RegisterBase<T> { + const BASE: usize; +} + /// Defines a dedicated type for a register with an absolute offset, including getter and setter /// methods for its fields and methods to read and write it from an `Io` region. /// @@ -56,20 +66,6 @@ /// The documentation strings are optional. If present, they will be added to the type's /// definition, or the field getter and setter methods they are attached to. /// -/// Putting a `+` before the address of the register makes it relative to a base: the `read` and -/// `write` methods take a `base` argument that is added to the specified address before access: -/// -/// ```no_run -/// register!(CPU_CTL @ +0x0000010, "CPU core control" { -/// 0:0 start as bool, "Start the CPU core"; -/// }); -/// -/// // Flip the `start` switch for the CPU core which base address is at `CPU_BASE`. -/// let cpuctl = CPU_CTL::read(&bar, CPU_BASE); -/// pr_info!("CPU CTL: {:#x}", cpuctl); -/// cpuctl.set_start(true).write(&bar, CPU_BASE); -/// ``` -/// /// It is also possible to create a alias register by using the `=> ALIAS` syntax. This is useful /// for cases where a register's interpretation depends on the context: /// @@ -85,6 +81,87 @@ /// /// In this example, `SCRATCH_0_BOOT_STATUS` uses the same I/O address as `SCRATCH`, while also /// providing its own `completed` field. +/// +/// ## Relative registers +/// +/// A register can be defined as being accessible from a fixed offset of a provided base. For +/// instance, imagine the following I/O space: +/// +/// ```text +/// +-----------------------------+ +/// | ... | +/// | | +/// 0x100--->+------------CPU0-------------+ +/// | | +/// 0x110--->+-----------------------------+ +/// | CPU_CTL | +/// +-----------------------------+ +/// | ... | +/// | | +/// | | +/// 0x200--->+------------CPU1-------------+ +/// | | +/// 0x210--->+-----------------------------+ +/// | CPU_CTL | +/// +-----------------------------+ +/// | ... | +/// +-----------------------------+ +/// ``` +/// +/// `CPU0` and `CPU1` both have a `CPU_CTL` register that starts at offset `0x10` of their I/O +/// space segment. Since both instances of `CPU_CTL` share the same layout, we don't want to define +/// them twice and would prefer a way to select which one to use from a single definition +/// +/// This can be done using the `Base[Offset]` syntax when specifying the register's address. +/// +/// `Base` is an arbitrary type (typically a ZST) to be used as a generic parameter of the +/// [`RegisterBase`] trait to provide the base as a constant, i.e. each type providing a base for +/// this register needs to implement `RegisterBase<Base>`. Here is the above example translated +/// into code: +/// +/// ```no_run +/// // Type used to identify the base. +/// pub(crate) struct CpuCtlBase; +/// +/// // ZST describing `CPU0`. +/// struct Cpu0; +/// impl RegisterBase<CpuCtlBase> for Cpu0 { +/// const BASE: usize = 0x100; +/// } +/// // Singleton of `CPU0` used to identify it. +/// const CPU0: Cpu0 = Cpu0; +/// +/// // ZST describing `CPU1`. +/// struct Cpu1; +/// impl RegisterBase<CpuCtlBase> for Cpu1 { +/// const BASE: usize = 0x200; +/// } +/// // Singleton of `CPU1` used to identify it. +/// const CPU1: Cpu1 = Cpu1; +/// +/// // This makes `CPU_CTL` accessible from all implementors of `RegisterBase<CpuCtlBase>`. +/// register!(CPU_CTL @ CpuCtlBase[0x10], "CPU core control" { +/// 0:0 start as bool, "Start the CPU core"; +/// }); +/// +/// // The `read`, `write` and `alter` methods of relative registers take an extra `base` argument +/// // that is used to resolve its final address by adding its `BASE` to the offset of the +/// // register. +/// +/// // Start `CPU0`. +/// CPU_CTL::alter(bar, &CPU0, |r| r.set_start(true)); +/// +/// // Start `CPU1`. +/// CPU_CTL::alter(bar, &CPU1, |r| r.set_start(true)); +/// +/// // Aliases can also be defined for relative register. +/// register!(CPU_CTL_ALIAS => CpuCtlBase[CPU_CTL], "Alias to CPU core control" { +/// 1:1 alias_start as bool, "Start the aliased CPU core"; +/// }); +/// +/// // Start the aliased `CPU0`. +/// CPU_CTL_ALIAS::alter(bar, &CPU0, |r| r.set_alias_start(true)); +/// ``` macro_rules! register { // Creates a register at a fixed offset of the MMIO space. ($name:ident @ $offset:literal $(, $comment:literal)? { $($fields:tt)* } ) => { @@ -98,16 +175,16 @@ macro_rules! register { register!(@io_fixed $name @ $alias::OFFSET); }; - // Creates a register at a relative offset from a base address. - ($name:ident @ + $offset:literal $(, $comment:literal)? { $($fields:tt)* } ) => { + // Creates a register at a relative offset from a base address provider. + ($name:ident @ $base:ty [ $offset:literal ] $(, $comment:literal)? { $($fields:tt)* } ) => { register!(@core $name $(, $comment)? { $($fields)* } ); - register!(@io_relative $name @ + $offset); + register!(@io_relative $name @ $base [ $offset ]); }; // Creates an alias register of relative offset register `alias` with its own fields. - ($name:ident => + $alias:ident $(, $comment:literal)? { $($fields:tt)* } ) => { + ($name:ident => $base:ty [ $alias:ident ] $(, $comment:literal)? { $($fields:tt)* }) => { register!(@core $name $(, $comment)? { $($fields)* } ); - register!(@io_relative $name @ + $alias::OFFSET); + register!(@io_relative $name @ $base [ $alias::OFFSET ]); }; // All rules below are helpers. @@ -380,39 +457,62 @@ pub(crate) fn alter<const SIZE: usize, T, F>( }; // Generates the IO accessors for a relative offset register. - (@io_relative $name:ident @ + $offset:literal) => { + (@io_relative $name:ident @ $base:ty [ $offset:expr ]) => { #[allow(dead_code)] impl $name { pub(crate) const OFFSET: usize = $offset; + /// Read the register from `io`, using the base address provided by `base` and adding + /// the register's offset to it. #[inline(always)] - pub(crate) fn read<const SIZE: usize, T>( + pub(crate) fn read<const SIZE: usize, T, B>( io: &T, - base: usize, + #[allow(unused_variables)] + base: &B, ) -> Self where T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, + B: crate::regs::macros::RegisterBase<$base>, { - Self(io.read32(base + $offset)) + const OFFSET: usize = $name::OFFSET; + + let value = io.read32( + <B as crate::regs::macros::RegisterBase<$base>>::BASE + OFFSET + ); + + Self(value) } + /// Write the value contained in `self` to `io`, using the base address provided by + /// `base` and adding the register's offset to it. #[inline(always)] - pub(crate) fn write<const SIZE: usize, T>( + pub(crate) fn write<const SIZE: usize, T, B>( self, io: &T, - base: usize, + #[allow(unused_variables)] + base: &B, ) where T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, + B: crate::regs::macros::RegisterBase<$base>, { - io.write32(self.0, base + $offset) + const OFFSET: usize = $name::OFFSET; + + io.write32( + self.0, + <B as crate::regs::macros::RegisterBase<$base>>::BASE + OFFSET + ); } + /// Read the register from `io`, using the base address provided by `base` and adding + /// the register's offset to it, then run `f` on its value to obtain a new value to + /// write back. #[inline(always)] - pub(crate) fn alter<const SIZE: usize, T, F>( + pub(crate) fn alter<const SIZE: usize, T, B, F>( io: &T, - base: usize, + base: &B, f: F, ) where T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, + B: crate::regs::macros::RegisterBase<$base>, F: ::core::ops::FnOnce(Self) -> Self, { let reg = f(Self::read(io, base)); -- 2.50.1
Daniel Almeida
2025-Jul-25 18:56 UTC
[PATCH v2 15/19] gpu: nova-core: register: redesign relative registers
Hi Alex,> On 18 Jul 2025, at 04:26, Alexandre Courbot <acourbot at nvidia.com> wrote: > > The relative registers are currently very unsafe to use: callers can > specify any constant as the base address for access, meaning they can > effectively interpret any I/O address as any relative register. > > Ideally, valid base addresses for a family of registers should be > explicitly defined in the code, and could only be used with the relevant > registers > > This patch changes the relative register declaration into this: > > register!(REGISTER_NAME @ BaseTrait[offset] ... > > Where `BaseTrait` is the name of a ZST used as a parameter of the > `RegisterBase<>` trait to define a trait unique to a class of register. > This specialized trait is then implemented for every type that provides > a valid base address, enabling said types to be passed as the base > address provider for the register's I/O accessor methods. > > This design thus makes it impossible to pass an unexpected base address > to a relative register, and, since the valid bases are all known at > compile-time, also guarantees that all I/O accesses are done within the > valid bounds of the I/O range. > > Signed-off-by: Alexandre Courbot <acourbot at nvidia.com>I think it would be helpful to showcase a before/after in the commit message. IIUC, we'd go from: /// Putting a `+` before the address of the register makes it relative to a base: the `read` and /// `write` methods take a `base` argument that is added to the specified address before access: /// /// ```no_run /// register!(CPU_CTL @ +0x0000010, "CPU core control" { /// 0:0 start as bool, "Start the CPU core"; /// }); To: /// ```no_run /// // Type used to identify the base. /// pub(crate) struct CpuCtlBase; /// /// // ZST describing `CPU0`. /// struct Cpu0; /// impl RegisterBase<CpuCtlBase> for Cpu0 { /// const BASE: usize = 0x100; /// } /// // Singleton of `CPU0` used to identify it. /// const CPU0: Cpu0 = Cpu0; /// /// // ZST describing `CPU1`. /// struct Cpu1; /// impl RegisterBase<CpuCtlBase> for Cpu1 { /// const BASE: usize = 0x200; /// } /// // Singleton of `CPU1` used to identify it. /// const CPU1: Cpu1 = Cpu1; So you can still pass whatever base you want, the difference (in this particular aspect) is whether it's specified in the macro itself, or as an associated constant of RegisterBase<Foo>? In any case, have you considered what happens when the number of "CPUs" in your example grows larger? I can only speak for Tyr, where (IIUC), I'd have to define 16 structs, each representing a single AS region, i.e.: +pub(crate) const MMU_BASE: usize = 0x2400; +pub(crate) const MMU_AS_SHIFT: usize = 6; + +const fn mmu_as(as_nr: usize) -> usize { + MMU_BASE + (as_nr << MMU_AS_SHIFT) + +pub(crate) struct AsRegister(usize); + +impl AsRegister { + fn new(as_nr: usize, offset: usize) -> Result<Self> { + if as_nr >= 32 { + Err(EINVAL) + } else { + Ok(AsRegister(mmu_as(as_nr) + offset)) + } + } It's still somewhat manageable, but I wonder if there are usecases out there (in other drivers/devices) where this number will be even higher, which will make this pattern impossible to implement. Or maybe I misunderstood the usecase? In any case, the patch itself looks fine to me. [?] ? Daniel