Hello,
That's just
mean(my.data)
Note that
summary(t(my.data))
also gives the mean. (You need to transpose because the way you ran
replicate outputs a 1x100 matrix.)
Hope this helps,
Rui Barradas
?s 21:17 de 07/05/20, varin sacha via R-help escreveu:> Dear R-experts,
>
> My goal is to get only 1 value : the average/ the mean of the 100 MSE
values. How can I finish my R code ?
>
> ###################################################################
> my.experiment <- function()? {
>
> n<-500
> x<-runif(n, 0, 5)
> z <- rnorm(n, 2, 3)
> a <- runif(n, 0, 5)
>
> y_model<- 0.1*x^3 - 0.5 * z^2 - a + 10
> y_obs <- y_model +c( rnorm(n*0.97, 0, 0.1), rnorm(n*0.03, 0, 0.5) )
> fit1<- lm(y_obs~x^3+z^2+a)
>
> MSE<-mean((fit1$fitted.values - y_model)^2)
> return( c(MSE) )
> }
>
> my.data = t(replicate( 100, my.experiment() ))
> summary(my.data)
> ################################################################
>
> ______________________________________________
> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>