Dear R-Experts,
Here is my reproducible R code to get the Mean squared error of GAM and MARS
after I = 50 iterations/replications.
If I want to get the 95% bootstrap CIs around the MSE of GAM and around the MSE
of MARS, how can I complete/modify my R code ?
Many thanks for your precious help.
##################
library(mgcv)
library(earth) ?
my.experiment <- function() {
n<-500
x <-runif(n, 0, 5)
z <- rnorm(n, 2, 3)
a <- runif(n, 0, 5)
y_model <- 0.1*x^3 - 0.5*z^2 - a + x*z + x*a + 3*x*a*z + 10
y_obs <- y_model +c( rnorm(n*0.97, 0, 0.1), rnorm(n*0.03, 0, 0.5) )
gam_model<- gam(y_obs~s(x)+s(z)+s(a))
mars_model<-earth(y_obs~x+z+a)
MSE_GAM<-mean((gam_model$fitted.values - y_model)^2)
MSE_MARS<-mean((mars_model$fitted.values - y_model)^2)
return( c(MSE_GAM, MSE_MARS) )
} ?
my.data = t(replicate( 50, my.experiment() ))
colnames(my.data) <- c("MSE_GAM", "MSE_MARS")
summary(my.data)?
##################
Hello, Is this what you are looking for? ci95 <- apply(my.data, 2, quantile, probs = c(0.025, 0.975)) Hope this helps, Rui Barradas ?s 20:42 de 23/09/19, varin sacha via R-help escreveu:> Dear R-Experts, > > Here is my reproducible R code to get the Mean squared error of GAM and MARS after I = 50 iterations/replications. > If I want to get the 95% bootstrap CIs around the MSE of GAM and around the MSE of MARS, how can I complete/modify my R code ? > > Many thanks for your precious help. > > ################## > > library(mgcv) > library(earth) > my.experiment <- function() { > n<-500 > x <-runif(n, 0, 5) > z <- rnorm(n, 2, 3) > a <- runif(n, 0, 5) > y_model <- 0.1*x^3 - 0.5*z^2 - a + x*z + x*a + 3*x*a*z + 10 > y_obs <- y_model +c( rnorm(n*0.97, 0, 0.1), rnorm(n*0.03, 0, 0.5) ) > gam_model<- gam(y_obs~s(x)+s(z)+s(a)) > mars_model<-earth(y_obs~x+z+a) > MSE_GAM<-mean((gam_model$fitted.values - y_model)^2) > MSE_MARS<-mean((mars_model$fitted.values - y_model)^2) > return( c(MSE_GAM, MSE_MARS) ) > } > my.data = t(replicate( 50, my.experiment() )) > colnames(my.data) <- c("MSE_GAM", "MSE_MARS") > summary(my.data) > > ################## > > ______________________________________________ > R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. >
Dear R-experts,
Below the reproducible example. I have tried to write a function that returns
the statistic of interest (MSE in my case). I have run boot( ) where the
function is included in the statistic argument. I have run boot.ci with the
result from boot( ). I guess the error comes from the data : bootResults <-
boot(data=?????,statistic=mse, R=1000)
Many thanks for your help.
##################################################
library(mgcv)
library(earth)
library(boot)
?
n<-2000
x <-runif(n, 0, 5)
z <- rnorm(n, 2, 3)
a <- runif(n, 0, 5)
y_model<- 0.1*x^3 - 0.5 * z^2 - a + 10
y_obs<-rnorm(n, y_model, 0.1)
gam_model<- gam(y_obs~s(x)+s(z)+s(a))
mars_model<-earth(y_obs~x+z+a)
?
MSE_GAM<-mean((gam_model$fitted.values - y_model)^2)
MSE_MARS<-mean((mars_model$fitted.values - y_model)^2)
?
MSE_GAM
MSE_MARS
?
mse <- function(data,i) {
boot.gam <- gam(y_obs~s(x)+s(z)+s(a),data=data[i,])
return(mean(boot.gam$residuals^2))
}
bootResults <-boot(data=data,statistic=mse,R=1000)
?
mse <- function(data,i) {
boot.earth <- earth((y_obs~x+z+a),data=data[i,])
return(mean(boot.earth$residuals^2))
}
bootResults <-boot(data=data,statistic=mse,R=1000)
##################################################
?
Le lundi 23 septembre 2019 ? 21:42:56 UTC+2, varin sacha via R-help <r-help
at r-project.org> a ?crit :
Dear R-Experts,
Here is my reproducible R code to get the Mean squared error of GAM and MARS
after I = 50 iterations/replications.
If I want to get the 95% bootstrap CIs around the MSE of GAM and around the MSE
of MARS, how can I complete/modify my R code ?
Many thanks for your precious help.
##################
library(mgcv)
library(earth) ?
my.experiment <- function() {
n<-500
x <-runif(n, 0, 5)
z <- rnorm(n, 2, 3)
a <- runif(n, 0, 5)
y_model <- 0.1*x^3 - 0.5*z^2 - a + x*z + x*a + 3*x*a*z + 10
y_obs <- y_model +c( rnorm(n*0.97, 0, 0.1), rnorm(n*0.03, 0, 0.5) )
gam_model<- gam(y_obs~s(x)+s(z)+s(a))
mars_model<-earth(y_obs~x+z+a)
MSE_GAM<-mean((gam_model$fitted.values - y_model)^2)
MSE_MARS<-mean((mars_model$fitted.values - y_model)^2)
return( c(MSE_GAM, MSE_MARS) )
} ?
my.data = t(replicate( 50, my.experiment() ))
colnames(my.data) <- c("MSE_GAM", "MSE_MARS")
summary(my.data)?
##################
______________________________________________
R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.
Hello,
In your reproducible example you forget to define 'data'.
You should also
set.seed(<some_int_number>)
The following works.
data <- data.frame(a, x, z, y_obs)
boot.ci.type <- c("norm","basic", "perc")
mse_gam <- function(data,i) {
boot.gam <- gam(y_obs~s(x)+s(z)+s(a),data=data[i,])
mean(boot.gam$residuals^2)
}
bootResults_gam <-boot(data=data, statistic=mse_gam, R=1000)
boot.ci(bootResults_gam, type = boot.ci.type)
mse <- function(data,i) {
boot.earth <- earth((y_obs~x+z+a),data=data[i,])
mean(boot.earth$residuals^2)
}
bootResults <- boot(data=data, statistic=mse, R=1000)
boot.ci(bootResults, type = boot.ci.type)
Hope this helps,
Rui Barradas
?s 13:43 de 25/09/19, varin sacha via R-help escreveu:> Dear R-experts,
>
> Below the reproducible example. I have tried to write a function that
returns the statistic of interest (MSE in my case). I have run boot( ) where the
function is included in the statistic argument. I have run boot.ci with the
result from boot( ). I guess the error comes from the data : bootResults <-
boot(data=?????,statistic=mse, R=1000)
> Many thanks for your help.
>
> ##################################################
> library(mgcv)
>
> library(earth)
>
> library(boot)
>
>
> n<-2000
>
> x <-runif(n, 0, 5)
>
> z <- rnorm(n, 2, 3)
>
> a <- runif(n, 0, 5)
>
>
> y_model<- 0.1*x^3 - 0.5 * z^2 - a + 10
>
> y_obs<-rnorm(n, y_model, 0.1)
>
> gam_model<- gam(y_obs~s(x)+s(z)+s(a))
>
> mars_model<-earth(y_obs~x+z+a)
>
>
> MSE_GAM<-mean((gam_model$fitted.values - y_model)^2)
>
> MSE_MARS<-mean((mars_model$fitted.values - y_model)^2)
>
>
> MSE_GAM
>
> MSE_MARS
>
>
>
> mse <- function(data,i) {
>
> boot.gam <- gam(y_obs~s(x)+s(z)+s(a),data=data[i,])
>
> return(mean(boot.gam$residuals^2))
>
> }
>
> bootResults <-boot(data=data,statistic=mse,R=1000)
>
>
>
> mse <- function(data,i) {
>
> boot.earth <- earth((y_obs~x+z+a),data=data[i,])
>
> return(mean(boot.earth$residuals^2))
>
> }
>
> bootResults <-boot(data=data,statistic=mse,R=1000)
> ##################################################
>
>
>
>
>
>
>
>
>
>
>
> Le lundi 23 septembre 2019 ? 21:42:56 UTC+2, varin sacha via R-help
<r-help at r-project.org> a ?crit :
>
>
>
>
>
> Dear R-Experts,
>
> Here is my reproducible R code to get the Mean squared error of GAM and
MARS after I = 50 iterations/replications.
> If I want to get the 95% bootstrap CIs around the MSE of GAM and around the
MSE of MARS, how can I complete/modify my R code ?
>
> Many thanks for your precious help.
>
> ##################
>
> library(mgcv)
> library(earth)
> my.experiment <- function() {
> n<-500
> x <-runif(n, 0, 5)
> z <- rnorm(n, 2, 3)
> a <- runif(n, 0, 5)
> y_model <- 0.1*x^3 - 0.5*z^2 - a + x*z + x*a + 3*x*a*z + 10
> y_obs <- y_model +c( rnorm(n*0.97, 0, 0.1), rnorm(n*0.03, 0, 0.5) )
> gam_model<- gam(y_obs~s(x)+s(z)+s(a))
> mars_model<-earth(y_obs~x+z+a)
> MSE_GAM<-mean((gam_model$fitted.values - y_model)^2)
> MSE_MARS<-mean((mars_model$fitted.values - y_model)^2)
> return( c(MSE_GAM, MSE_MARS) )
> }
> my.data = t(replicate( 50, my.experiment() ))
> colnames(my.data) <- c("MSE_GAM", "MSE_MARS")
> summary(my.data)
>
> ##################
>
> ______________________________________________
> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
> ______________________________________________
> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>