DIGHE, NILESH [AG/2362]
2016-Jan-05 16:48 UTC
[R] store results from loop into a dataframe
Dear R users:
I am trying to create a function that will loop over three dependent variables
in my aov model, and then get the HSD.test for each variable. I like to store
the results from each loop in a data frame.
When I run my function (funx) on my data (dat), results from only yield gets
populated in all three columns of the dataframe. I am not able to store the
results for each variable in a dataframe. Any help will be highly appreciated.
function (x)
{
trait_names <- c("yield", "lp", "lnth")
d = data.frame(yield = rep(0, 6), lp = rep(0, 6), lnth = rep(0,
6))
for (i in trait_names) {
mod <- aov(formula(paste(trait_names, "~ PEDIGREE + FIELD +
PEDIGREE*FIELD + FIELD%in%REP")),
data = x)
out <- HSD.test(mod, "PEDIGREE", group = TRUE, console =
FALSE)
d[, i] <- out$means[, 1]
}
d
}
structure(list(FIELD = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L), .Label = c("FYLS", "HKI1",
"KIS1", "LMLS",
"SELS", "SGL1"), class = "factor"), REP =
structure(c(1L, 2L,
3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L,
1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L,
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L,
3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L,
1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L,
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L,
3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L), .Label = c("1",
"2",
"3"), class = "factor"), PEDIGREE = structure(c(1L, 1L, 1L,
2L,
2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 1L, 1L,
1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L,
1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L,
6L, 6L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L,
5L, 6L, 6L, 6L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L,
5L, 5L, 5L, 6L, 6L, 6L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L,
4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L), .Label = c("A", "B",
"C", "D",
"E", "F"), class = "factor"), yield = c(1003L,
923L, 1268L, 1226L,
1059L, 1150L, 900L, 816L, 1072L, 1158L, 1026L, 1299L, 1083L,
1038L, 1236L, 1287L, 1270L, 1612L, 1513L, 1676L, 1504L, 1417L,
1932L, 1644L, 1293L, 1542L, 1452L, 1180L, 1248L, 1764L, 1326L,
1877L, 1788L, 1606L, 1809L, 1791L, 2294L, 2315L, 2320L, 2083L,
1895L, 2284L, 2000L, 2380L, 1952L, 2414L, 2354L, 2095L, 2227L,
2093L, 2019L, 2505L, 2410L, 2287L, 2507L, 2507L, 2349L, 2162L,
2108L, 2319L, 2028L, 1947L, 2352L, 2698L, 2369L, 1798L, 2422L,
2509L, 2234L, 2451L, 2139L, 1957L, 799L, 787L, 701L, 781L, 808L,
582L, 770L, 752L, 801L, 865L, 608L, 620L, 677L, 775L, 722L, 1030L,
606L, 729L, 1638L, 1408L, 1045L, 1685L, 1109L, 1210L, 1419L,
1048L, 1129L, 1549L, 1325L, 1315L, 1838L, 1066L, 1295L, 1499L,
1472L, 1139L), lp = c(NA, NA, 46.31, NA, NA, 43.8, NA, NA, 43.91,
NA, NA, 44.47, NA, NA, 45.16, NA, NA, 43.57, 40.65, NA, NA, 40.04,
NA, NA, 41.33, NA, NA, 40.75, NA, NA, 42.04, NA, NA, 40.35, NA,
NA, 43.682, NA, NA, 41.712, NA, NA, 42.566, NA, NA, 43.228, NA,
NA, 43.63, NA, NA, 42.058, NA, NA, NA, 45.19, NA, NA, 41.91,
NA, NA, 43.86, NA, NA, 44.48, NA, NA, 44.34, NA, NA, 43.03, NA,
NA, NA, 44.08, NA, NA, 41.39, NA, NA, 42.48, NA, NA, 44.13, NA,
NA, 43.39, NA, NA, 42.82, 42.18, NA, NA, 41.42, NA, NA, 41.25,
NA, NA, 42.31, NA, NA, 43.22, NA, NA, 40.52, NA, NA), lnth = c(NA,
NA, 1.151, NA, NA, 1.135, NA, NA, 1.109, NA, NA, 1.117, NA, NA,
1.107, NA, NA, 1.196, 1.255, NA, NA, 1.229, NA, NA, 1.158, NA,
NA, 1.214, NA, NA, 1.152, NA, NA, 1.194, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
1.2, NA, NA, 1.219, NA, NA, 1.115, NA, NA, 1.205, NA, NA, 1.238,
NA, NA, 1.244, NA, NA, NA, 1.096, NA, NA, 1.021, NA, NA, 1.055,
NA, NA, 1.058, NA, NA, 1.026, NA, NA, 1.115, 1.202, NA, NA, 1.161,
NA, NA, 1.168, NA, NA, 1.189, NA, NA, 1.204, NA, NA, 1.277, NA,
NA)), .Names = c("FIELD", "REP", "PEDIGREE",
"yield", "lp", "lnth"
), row.names = c(NA, -108L), class = "data.frame")
R version 3.2.1 (2015-06-18)
Platform: i386-w64-mingw32/i386 (32-bit)
Running under: Windows 7 x64 (build 7601) Service Pack 1
locale:
[1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] agricolae_1.2-1 asreml_3.0 lattice_0.20-31 ggplot2_1.0.1 dplyr_0.4.2
plyr_1.8.3
loaded via a namespace (and not attached):
[1] spdep_0.5-88 Rcpp_0.12.1 cluster_2.0.2 magrittr_1.5
splines_3.2.1 MASS_7.3-41
[7] munsell_0.4.2 colorspace_1.2-6 R6_2.0.1 stringr_1.0.0
tools_3.2.1 parallel_3.2.1
[13] grid_3.2.1 gtable_0.1.2 nlme_3.1-122 coda_0.17-1
DBI_0.3.1 deldir_0.1-9
[19] lazyeval_0.1.10 assertthat_0.1 digest_0.6.8 Matrix_1.2-1
reshape2_1.4.1 sp_1.2-1
[25] stringi_1.0-1 klaR_0.6-12 LearnBayes_2.15 scales_0.3.0
boot_1.3-17 combinat_0.0-8
[31] proto_0.3-10
Thanks.
Nilesh
Nilesh Dighe
(806)-252-7492 (Cell)
(806)-741-2019 (Office)
This e-mail message may contain privileged and/or confidential information, and
is intended to be received only by persons entitled
to receive such information. If you have received this e-mail in error, please
notify the sender immediately. Please delete it and
all attachments from any servers, hard drives or any other media. Other use of
this e-mail by you is strictly prohibited.
All e-mails and attachments sent and received are subject to monitoring, reading
and archival by Monsanto, including its
subsidiaries. The recipient of this e-mail is solely responsible for checking
for the presence of "Viruses" or other "Malware".
Monsanto, along with its subsidiaries, accepts no liability for any damage
caused by any such code transmitted by or accompanying
this e-mail or any attachment.
The information contained in this email may be subject to the export control
laws and regulations of the United States, potentially
including but not limited to the Export Administration Regulations (EAR) and
sanctions regulations issued by the U.S. Department of
Treasury, Office of Foreign Asset Controls (OFAC). As a recipient of this
information you are obligated to comply with all
applicable U.S. export laws and regulations.
[[alternative HTML version deleted]]
Leaving aside the question of whether this is the best way to approach
your problem (unlikely), there's a couple of errors in your code
involving indexing. Once fixed, the code demonstrates some errors in
your use of HSD.test that will be harder for you to deal with.
Thanks for the complete reproducible example.
fun2 <- function (x)
{
trait_names <- c("yield", "lp", "lnth")
d = data.frame(yield = rep(0, 6), lp = rep(0, 6), lnth = rep(0,
6))
for (i in trait_names) {
# your formula has all the trait names, not the selected one
# mod <- aov(formula(paste(trait_names, "~ PEDIGREE + FIELD +
PEDIGREE*FIELD + FIELD%in%REP")), data = x)
mod <- aov(formula(paste(i, "~ PEDIGREE + FIELD +
PEDIGREE*FIELD + FIELD%in%REP")), data = x)
out <- HSD.test(mod, "PEDIGREE", group = TRUE, console =
FALSE)
# you're indexing by the trait name, instead of its position
# d[, i] <- out$means[, 1]
d[, which(trait_names == i)] <- out$means[, 1]
}
d
}
Sarah
On Tue, Jan 5, 2016 at 11:48 AM, DIGHE, NILESH [AG/2362]
<nilesh.dighe at monsanto.com> wrote:> Dear R users:
>
> I am trying to create a function that will loop over three dependent
variables in my aov model, and then get the HSD.test for each variable. I like
to store the results from each loop in a data frame.
>
>
>
> When I run my function (funx) on my data (dat), results from only yield
gets populated in all three columns of the dataframe. I am not able to store
the results for each variable in a dataframe. Any help will be highly
appreciated.
>
>
>
>
>
>
>
> function (x)
>
> {
>
> trait_names <- c("yield", "lp",
"lnth")
>
> d = data.frame(yield = rep(0, 6), lp = rep(0, 6), lnth = rep(0,
>
> 6))
>
> for (i in trait_names) {
>
> mod <- aov(formula(paste(trait_names, "~ PEDIGREE + FIELD +
PEDIGREE*FIELD + FIELD%in%REP")),
>
> data = x)
>
> out <- HSD.test(mod, "PEDIGREE", group = TRUE, console
= FALSE)
>
> d[, i] <- out$means[, 1]
>
> }
>
> d
>
> }
>
>
> structure(list(FIELD = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
> 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L,
> 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L,
> 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L,
> 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
> 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
> 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
> 6L, 6L, 6L, 6L, 6L), .Label = c("FYLS", "HKI1",
"KIS1", "LMLS",
> "SELS", "SGL1"), class = "factor"), REP =
structure(c(1L, 2L,
> 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L,
> 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L,
> 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L,
> 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L,
> 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L,
> 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L,
> 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L), .Label = c("1",
"2",
> "3"), class = "factor"), PEDIGREE = structure(c(1L, 1L,
1L, 2L,
> 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 1L, 1L,
> 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L,
> 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L,
> 6L, 6L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L,
> 5L, 6L, 6L, 6L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L,
> 5L, 5L, 5L, 6L, 6L, 6L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L,
> 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L), .Label = c("A", "B",
"C", "D",
> "E", "F"), class = "factor"), yield =
c(1003L, 923L, 1268L, 1226L,
> 1059L, 1150L, 900L, 816L, 1072L, 1158L, 1026L, 1299L, 1083L,
> 1038L, 1236L, 1287L, 1270L, 1612L, 1513L, 1676L, 1504L, 1417L,
> 1932L, 1644L, 1293L, 1542L, 1452L, 1180L, 1248L, 1764L, 1326L,
> 1877L, 1788L, 1606L, 1809L, 1791L, 2294L, 2315L, 2320L, 2083L,
> 1895L, 2284L, 2000L, 2380L, 1952L, 2414L, 2354L, 2095L, 2227L,
> 2093L, 2019L, 2505L, 2410L, 2287L, 2507L, 2507L, 2349L, 2162L,
> 2108L, 2319L, 2028L, 1947L, 2352L, 2698L, 2369L, 1798L, 2422L,
> 2509L, 2234L, 2451L, 2139L, 1957L, 799L, 787L, 701L, 781L, 808L,
> 582L, 770L, 752L, 801L, 865L, 608L, 620L, 677L, 775L, 722L, 1030L,
> 606L, 729L, 1638L, 1408L, 1045L, 1685L, 1109L, 1210L, 1419L,
> 1048L, 1129L, 1549L, 1325L, 1315L, 1838L, 1066L, 1295L, 1499L,
> 1472L, 1139L), lp = c(NA, NA, 46.31, NA, NA, 43.8, NA, NA, 43.91,
> NA, NA, 44.47, NA, NA, 45.16, NA, NA, 43.57, 40.65, NA, NA, 40.04,
> NA, NA, 41.33, NA, NA, 40.75, NA, NA, 42.04, NA, NA, 40.35, NA,
> NA, 43.682, NA, NA, 41.712, NA, NA, 42.566, NA, NA, 43.228, NA,
> NA, 43.63, NA, NA, 42.058, NA, NA, NA, 45.19, NA, NA, 41.91,
> NA, NA, 43.86, NA, NA, 44.48, NA, NA, 44.34, NA, NA, 43.03, NA,
> NA, NA, 44.08, NA, NA, 41.39, NA, NA, 42.48, NA, NA, 44.13, NA,
> NA, 43.39, NA, NA, 42.82, 42.18, NA, NA, 41.42, NA, NA, 41.25,
> NA, NA, 42.31, NA, NA, 43.22, NA, NA, 40.52, NA, NA), lnth = c(NA,
> NA, 1.151, NA, NA, 1.135, NA, NA, 1.109, NA, NA, 1.117, NA, NA,
> 1.107, NA, NA, 1.196, 1.255, NA, NA, 1.229, NA, NA, 1.158, NA,
> NA, 1.214, NA, NA, 1.152, NA, NA, 1.194, NA, NA, NA, NA, NA,
> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
> 1.2, NA, NA, 1.219, NA, NA, 1.115, NA, NA, 1.205, NA, NA, 1.238,
> NA, NA, 1.244, NA, NA, NA, 1.096, NA, NA, 1.021, NA, NA, 1.055,
> NA, NA, 1.058, NA, NA, 1.026, NA, NA, 1.115, 1.202, NA, NA, 1.161,
> NA, NA, 1.168, NA, NA, 1.189, NA, NA, 1.204, NA, NA, 1.277, NA,
> NA)), .Names = c("FIELD", "REP", "PEDIGREE",
"yield", "lp", "lnth"
> ), row.names = c(NA, -108L), class = "data.frame")
>
>
>
>
>
>
> R version 3.2.1 (2015-06-18)
>
> Platform: i386-w64-mingw32/i386 (32-bit)
>
> Running under: Windows 7 x64 (build 7601) Service Pack 1
>
>
>
> locale:
>
> [1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United
States.1252
>
> [3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C
>
> [5] LC_TIME=English_United States.1252
>
>
>
> attached base packages:
>
> [1] stats graphics grDevices utils datasets methods base
>
>
>
> other attached packages:
>
> [1] agricolae_1.2-1 asreml_3.0 lattice_0.20-31 ggplot2_1.0.1
dplyr_0.4.2 plyr_1.8.3
>
>
>
> loaded via a namespace (and not attached):
>
> [1] spdep_0.5-88 Rcpp_0.12.1 cluster_2.0.2 magrittr_1.5
splines_3.2.1 MASS_7.3-41
>
> [7] munsell_0.4.2 colorspace_1.2-6 R6_2.0.1 stringr_1.0.0
tools_3.2.1 parallel_3.2.1
>
> [13] grid_3.2.1 gtable_0.1.2 nlme_3.1-122 coda_0.17-1
DBI_0.3.1 deldir_0.1-9
>
> [19] lazyeval_0.1.10 assertthat_0.1 digest_0.6.8 Matrix_1.2-1
reshape2_1.4.1 sp_1.2-1
>
> [25] stringi_1.0-1 klaR_0.6-12 LearnBayes_2.15 scales_0.3.0
boot_1.3-17 combinat_0.0-8
>
> [31] proto_0.3-10
>
> Thanks.
> Nilesh
>
Sarah Goslee
http://www.numberwright.com
DIGHE, NILESH [AG/2362]
2016-Jan-05 17:39 UTC
[R] store results from loop into a dataframe
Sarah: Thanks for pointing out the errors in my function.
Below are the errors I am getting after I run the corrected quote:
Error in if (s) { : missing value where TRUE/FALSE needed
In addition: Warning message:
In qtukey(1 - alpha, ntr, DFerror) : NaNs produced
You are right, I have no idea to handle these errors.
Do you recommend any other approach to solve my problem?
Thanks for your time.
Nilesh
-----Original Message-----
From: Sarah Goslee [mailto:sarah.goslee at gmail.com]
Sent: Tuesday, January 05, 2016 11:20 AM
To: DIGHE, NILESH [AG/2362]
Cc: r-help at r-project.org
Subject: Re: [R] store results from loop into a dataframe
Leaving aside the question of whether this is the best way to approach your
problem (unlikely), there's a couple of errors in your code involving
indexing. Once fixed, the code demonstrates some errors in your use of HSD.test
that will be harder for you to deal with.
Thanks for the complete reproducible example.
fun2 <- function (x)
{
trait_names <- c("yield", "lp", "lnth")
d = data.frame(yield = rep(0, 6), lp = rep(0, 6), lnth = rep(0,
6))
for (i in trait_names) {
# your formula has all the trait names, not the selected one
# mod <- aov(formula(paste(trait_names, "~ PEDIGREE + FIELD +
PEDIGREE*FIELD + FIELD%in%REP")), data = x)
mod <- aov(formula(paste(i, "~ PEDIGREE + FIELD + PEDIGREE*FIELD
+ FIELD%in%REP")), data = x)
out <- HSD.test(mod, "PEDIGREE", group = TRUE, console =
FALSE)
# you're indexing by the trait name, instead of its position
# d[, i] <- out$means[, 1]
d[, which(trait_names == i)] <- out$means[, 1]
}
d
}
Sarah
On Tue, Jan 5, 2016 at 11:48 AM, DIGHE, NILESH [AG/2362] <nilesh.dighe at
monsanto.com> wrote:> Dear R users:
>
> I am trying to create a function that will loop over three dependent
variables in my aov model, and then get the HSD.test for each variable. I like
to store the results from each loop in a data frame.
>
>
>
> When I run my function (funx) on my data (dat), results from only yield
gets populated in all three columns of the dataframe. I am not able to store
the results for each variable in a dataframe. Any help will be highly
appreciated.
>
>
>
>
>
>
>
> function (x)
>
> {
>
> trait_names <- c("yield", "lp",
"lnth")
>
> d = data.frame(yield = rep(0, 6), lp = rep(0, 6), lnth = rep(0,
>
> 6))
>
> for (i in trait_names) {
>
> mod <- aov(formula(paste(trait_names, "~ PEDIGREE + FIELD +
> PEDIGREE*FIELD + FIELD%in%REP")),
>
> data = x)
>
> out <- HSD.test(mod, "PEDIGREE", group = TRUE, console
=
> FALSE)
>
> d[, i] <- out$means[, 1]
>
> }
>
> d
>
> }
>
>
> structure(list(FIELD = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
> 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
> 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
> 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L,
> 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L,
> 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L,
> 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L), .Label =
> c("FYLS", "HKI1", "KIS1", "LMLS",
"SELS", "SGL1"), class = "factor"),
> REP = structure(c(1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L,
> 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L,
> 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L,
> 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L,
> 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L,
> 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L,
> 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L), .Label = c("1",
"2", "3"),
> class = "factor"), PEDIGREE = structure(c(1L, 1L, 1L, 2L, 2L, 2L,
3L,
> 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 1L, 1L, 1L, 2L, 2L, 2L,
> 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 1L, 1L, 1L, 2L, 2L,
> 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 1L, 1L, 1L, 2L,
> 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 1L, 1L, 1L,
> 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 1L, 1L,
> 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L),
> .Label = c("A", "B", "C", "D",
"E", "F"), class = "factor"), yield =
> c(1003L, 923L, 1268L, 1226L, 1059L, 1150L, 900L, 816L, 1072L, 1158L,
> 1026L, 1299L, 1083L, 1038L, 1236L, 1287L, 1270L, 1612L, 1513L, 1676L,
> 1504L, 1417L, 1932L, 1644L, 1293L, 1542L, 1452L, 1180L, 1248L, 1764L,
> 1326L, 1877L, 1788L, 1606L, 1809L, 1791L, 2294L, 2315L, 2320L, 2083L,
> 1895L, 2284L, 2000L, 2380L, 1952L, 2414L, 2354L, 2095L, 2227L, 2093L,
> 2019L, 2505L, 2410L, 2287L, 2507L, 2507L, 2349L, 2162L, 2108L, 2319L,
> 2028L, 1947L, 2352L, 2698L, 2369L, 1798L, 2422L, 2509L, 2234L, 2451L,
> 2139L, 1957L, 799L, 787L, 701L, 781L, 808L, 582L, 770L, 752L, 801L,
> 865L, 608L, 620L, 677L, 775L, 722L, 1030L, 606L, 729L, 1638L, 1408L,
> 1045L, 1685L, 1109L, 1210L, 1419L, 1048L, 1129L, 1549L, 1325L, 1315L,
> 1838L, 1066L, 1295L, 1499L, 1472L, 1139L), lp = c(NA, NA, 46.31, NA,
> NA, 43.8, NA, NA, 43.91, NA, NA, 44.47, NA, NA, 45.16, NA, NA, 43.57,
> 40.65, NA, NA, 40.04, NA, NA, 41.33, NA, NA, 40.75, NA, NA, 42.04, NA,
> NA, 40.35, NA, NA, 43.682, NA, NA, 41.712, NA, NA, 42.566, NA, NA,
> 43.228, NA, NA, 43.63, NA, NA, 42.058, NA, NA, NA, 45.19, NA, NA,
> 41.91, NA, NA, 43.86, NA, NA, 44.48, NA, NA, 44.34, NA, NA, 43.03, NA,
> NA, NA, 44.08, NA, NA, 41.39, NA, NA, 42.48, NA, NA, 44.13, NA, NA,
> 43.39, NA, NA, 42.82, 42.18, NA, NA, 41.42, NA, NA, 41.25, NA, NA,
> 42.31, NA, NA, 43.22, NA, NA, 40.52, NA, NA), lnth = c(NA, NA, 1.151,
> NA, NA, 1.135, NA, NA, 1.109, NA, NA, 1.117, NA, NA, 1.107, NA, NA,
> 1.196, 1.255, NA, NA, 1.229, NA, NA, 1.158, NA, NA, 1.214, NA, NA,
> 1.152, NA, NA, 1.194, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
> NA, NA, NA, NA, NA, NA, NA, NA, NA, 1.2, NA, NA, 1.219, NA, NA, 1.115,
> NA, NA, 1.205, NA, NA, 1.238, NA, NA, 1.244, NA, NA, NA, 1.096, NA,
> NA, 1.021, NA, NA, 1.055, NA, NA, 1.058, NA, NA, 1.026, NA, NA, 1.115,
> 1.202, NA, NA, 1.161, NA, NA, 1.168, NA, NA, 1.189, NA, NA, 1.204, NA,
> NA, 1.277, NA, NA)), .Names = c("FIELD", "REP",
"PEDIGREE", "yield",
> "lp", "lnth"
> ), row.names = c(NA, -108L), class = "data.frame")
>
>
>
>
>
>
> R version 3.2.1 (2015-06-18)
>
> Platform: i386-w64-mingw32/i386 (32-bit)
>
> Running under: Windows 7 x64 (build 7601) Service Pack 1
>
>
>
> locale:
>
> [1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United
> States.1252
>
> [3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C
>
> [5] LC_TIME=English_United States.1252
>
>
>
> attached base packages:
>
> [1] stats graphics grDevices utils datasets methods base
>
>
>
> other attached packages:
>
> [1] agricolae_1.2-1 asreml_3.0 lattice_0.20-31 ggplot2_1.0.1
dplyr_0.4.2 plyr_1.8.3
>
>
>
> loaded via a namespace (and not attached):
>
> [1] spdep_0.5-88 Rcpp_0.12.1 cluster_2.0.2 magrittr_1.5
splines_3.2.1 MASS_7.3-41
>
> [7] munsell_0.4.2 colorspace_1.2-6 R6_2.0.1 stringr_1.0.0
tools_3.2.1 parallel_3.2.1
>
> [13] grid_3.2.1 gtable_0.1.2 nlme_3.1-122 coda_0.17-1
DBI_0.3.1 deldir_0.1-9
>
> [19] lazyeval_0.1.10 assertthat_0.1 digest_0.6.8 Matrix_1.2-1
reshape2_1.4.1 sp_1.2-1
>
> [25] stringi_1.0-1 klaR_0.6-12 LearnBayes_2.15 scales_0.3.0
boot_1.3-17 combinat_0.0-8
>
> [31] proto_0.3-10
>
> Thanks.
> Nilesh
>
Sarah Goslee
http://www.numberwright.com
This e-mail message may contain privileged and/or confidential information, and
is intended to be received only by persons entitled
to receive such information. If you have received this e-mail in error, please
notify the sender immediately. Please delete it and
all attachments from any servers, hard drives or any other media. Other use of
this e-mail by you is strictly prohibited.
All e-mails and attachments sent and received are subject to monitoring, reading
and archival by Monsanto, including its
subsidiaries. The recipient of this e-mail is solely responsible for checking
for the presence of "Viruses" or other "Malware".
Monsanto, along with its subsidiaries, accepts no liability for any damage
caused by any such code transmitted by or accompanying
this e-mail or any attachment.
The information contained in this email may be subject to the export control
laws and regulations of the United States, potentially
including but not limited to the Export Administration Regulations (EAR) and
sanctions regulations issued by the U.S. Department of
Treasury, Office of Foreign Asset Controls (OFAC). As a recipient of this
information you are obligated to comply with all
applicable U.S. export laws and regulations.