Giorgio Garziano
2015-Dec-20 19:14 UTC
[R] neuralnet to discriminate a given outcome by giving cutoff outputs
I would tackle the problem in the following way: lm.model <- lm(z~ x + y, data=m) summary(lm.model) Call: lm(formula = z ~ x + y, data = m) Residuals: Min 1Q Median 3Q Max -0.34476713 -0.09571506 -0.01786731 0.05225554 0.51693389 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.071612058 0.041196651 -1.73830 0.0876543 . x 0.003952998 0.001336833 2.95699 0.0045417 ** y 9.968145059 0.461213516 21.61286 < 0.000000000000000222 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.157775 on 56 degrees of freedom Multiple R-squared: 0.905464, Adjusted R-squared: 0.9020877 F-statistic: 268.1834 on 2 and 56 DF, p-value: < 0.00000000000000022204 coef.model <- coef(lm.model) z.hat <- coef.model[1]+coef.model[2]*x+coef.model[3]*y z.hat.discrete <- rep(1, length(z.hat)) z.hat.discrete[z.hat <0.4] <- 0> all.equal(z, z.hat.discrete)[1] TRUE I apologise for using such naif approach in place of neural net. -- GG http://around-r.blogspot.it [[alternative HTML version deleted]]