Hello,
Writing to seek help in regard to some unexpected performance anomaly i am
observing in using tsoutlers:tso on the mac vs on an AWS cloud server..
I am running the following code with very small dataset of about 208
records.
d.dir <- '/Users/darshanpandya/xxxxxx'
FNAME <- 'my_data.csv'
d.input <- fread(file.path(paste0(d.dir,"/zzz/"),FNAME,fsep
.Platform$file.sep), header = TRUE, stringsAsFactors = FALSE, showProgress
= TRUE) %>% as.data.frame
d.input$dummy_date <- as.Date(d.input$dummy_date, "%Y-%m-%d")
selectedCols <- c("observation","dummy_date")
inputData <- d.input[,selectedCols]
outlier.types <- list("Additive Outliers","Levels
Shifts","Seasonal Level
Shifts","Innovation Outlier","Temporary Change")
tsFrequency <- 52
params <- list("outlier.types" =
outlier.types,"tsFrequency" = tsFrequency)
tsFrequency = params$tsFrequency
outTypes <- unlist(params$outlier.types)
ts.var <- ts(inputData[,1], frequency = tsFrequency)
ts_outlier <- tso(ts.var, types ?outlier.types ?
, maxit = 1)
?
This piece of code runs in about 60 seconds on my laptop but take about
upward of 13 mins on a decent AWS node with nothing else running on it.
Any hints as to why this is happening is greatly appreciated.
Thank you for your help.
?
-- 
Sincerely,
Darshan
	[[alternative HTML version deleted]]
Hello,
Writing to seek help in regard to some unexpected performance anomaly i am
observing in using tsoutlers:tso on the mac vs on an AWS cloud server..
I am running the following code with very small dataset of about 208
records.
d.dir <- '/Users/darshanpandya/xxxxxx'
FNAME <- 'my_data.csv'
d.input <- fread(file.path(paste0(d.dir,"/zzz/"),FNAME,fsep
.Platform$file.sep), header = TRUE, stringsAsFactors = FALSE, showProgress
= TRUE) %>% as.data.frame
d.input$dummy_date <- as.Date(d.input$dummy_date, "%Y-%m-%d")
selectedCols <- c("observation","dummy_date")
inputData <- d.input[,selectedCols]
outlier.types <- list("Additive Outliers","Levels
Shifts","Seasonal Level
Shifts","Innovation Outlier","Temporary Change")
tsFrequency <- 52
params <- list("outlier.types" =
outlier.types,"tsFrequency" = tsFrequency)
tsFrequency = params$tsFrequency
outTypes <- unlist(params$outlier.types)
ts.var <- ts(inputData[,1], frequency = tsFrequency)
ts_outlier <- tso(ts.var, types ?outlier.types ?
, maxit = 1)
?
This piece of code runs in about 60 seconds on my laptop but take about
upward of 13 mins on a decent AWS node with nothing else running on it.
Any hints as to why this is happening is greatly appreciated.
Thank you for your help.
-- 
Sincerely,
Darshan
	[[alternative HTML version deleted]]
You can record the time to evaluate each line by wrapping each line in a
call to system.time().  E.g.,
expressions <- quote({
    # paste your commands here, or put them into a file and use exprs <-
parse("thatFile")
    d.dir <- '/Users/darshanpandya/xxxxxx'
FNAME <- 'my_data.csv'
d.input <- fread(file.path(paste0(d.dir,"/zzz/"),FNAME,fsep
.Platform$file.sep), header = TRUE, stringsAsFactors = FALSE, showProgress
= TRUE) %>% as.data.frame
  # ... the rest of your lines
})
expressions <- as.list(expressions)[-1]
timedExpressions <- lapply(expressions,
function(expr)bquote(system.time(.(expr))))
source(exprs=timedExpressions, echo=TRUE)
See which line (or lines) show big time differences on the two platforms.
Bill Dunlap
TIBCO Software
wdunlap tibco.com
On Fri, Apr 13, 2018 at 8:33 AM, Darshan Pandya <darshanpandya at
gmail.com>
wrote:
> Hello,
>
> Writing to seek help in regard to some unexpected performance anomaly i am
> observing in using tsoutlers:tso on the mac vs on an AWS cloud server..
>
>
> I am running the following code with very small dataset of about 208
> records.
>
> d.dir <- '/Users/darshanpandya/xxxxxx'
> FNAME <- 'my_data.csv'
>
> d.input <- fread(file.path(paste0(d.dir,"/zzz/"),FNAME,fsep
> .Platform$file.sep), header = TRUE, stringsAsFactors = FALSE, showProgress
> = TRUE) %>% as.data.frame
> d.input$dummy_date <- as.Date(d.input$dummy_date, "%Y-%m-%d")
>
> selectedCols <- c("observation","dummy_date")
> inputData <- d.input[,selectedCols]
> outlier.types <- list("Additive Outliers","Levels
Shifts","Seasonal Level
> Shifts","Innovation Outlier","Temporary Change")
> tsFrequency <- 52
> params <- list("outlier.types" =
outlier.types,"tsFrequency" = tsFrequency)
>
> tsFrequency = params$tsFrequency
> outTypes <- unlist(params$outlier.types)
> ts.var <- ts(inputData[,1], frequency = tsFrequency)
> ts_outlier <- tso(ts.var, types > ?outlier.types ?
> , maxit = 1)
>
> ?
>
> This piece of code runs in about 60 seconds on my laptop but take about
> upward of 13 mins on a decent AWS node with nothing else running on it.
>
> Any hints as to why this is happening is greatly appreciated.
> Thank you for your help.
>
>
>
>
>
> --
> Sincerely,
> Darshan
>
>         [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/
> posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
	[[alternative HTML version deleted]]