Displaying 20 results from an estimated 20000 matches similar to: "Installing archived package alongisde current one"
2006 Oct 08
1
Simulate p-value in lme4
Dear r-helpers,
Spencer Graves and Manual Morales proposed the following methods to
simulate p-values in lme4:
************preliminary************
require(lme4)
require(MASS)
summary(glm(y ~ lbase*trt + lage + V4, family = poisson, data =
epil), cor = FALSE)
epil2 <- epil[epil$period == 1, ]
epil2["period"] <- rep(0, 59); epil2["y"] <- epil2["base"]
2007 Jul 27
3
Convert string to list?
Let's say I have the following string:
str <- "P = 0.0, T = 0.0, Q = 0.0"
I'd like to find a function that generates the following object from
'str'.
list(P = 0.0, T = 0.0, Q = 0.0)
Thanks!
--
http://mutualism.williams.edu
2006 Dec 03
2
Force "square" crosstabulation
Hello list members,
I'm looking for a way to force the results of a crosstabulation to be
square - that is, to include 0 values.
For example:
table(letters[1:4],letters[c(1:3,3)])
yields:
a b c
a 1 0 0
b 0 1 0
c 0 0 1
d 0 0 1
I would like to return:
a b c d
a 1 0 0 0
b 0 1 0 0
c 0 0 1 0
d 0 0 1 0
Any suggestions?
Thanks!
--
Manuel A. Morales
2007 Feb 13
1
lme4/lmer: P-Values from mcmc samples or chi2-tests?
Dear R users,
I have now tried out several options of obtaining p-values for
(quasi)poisson lmer models, including Markov-chain Monte Carlo sampling
and single-term deletions with subsequent chi-square tests (although I
am aware that the latter may be problematic).
However, I encountered several problems that can be classified as
(1) the quasipoisson lmer model does not give p-values when
2006 Aug 17
1
Simulate p-value in lme4
Dear list,
This is more of a stats question than an R question per se. First, I
realize there has been a lot of discussion about the problems with
estimating P-values from F-ratios for mixed-effects models in lme4.
Using mcmcsamp() seems like a great alternative for evaluating the
significance of individual coefficients, but not for groups of
coefficients as might occur in an experimental design
2009 Jun 22
1
nls vs nlme: parameter constraints
Hello list,
I'm trying to fit a model like beta[trt]/(1+alpha*x) where the data
include some grouping factor. The problem is that the estimate for alpha
is undefined for some of the treatments - any value greater than 20 is
equally good and a step function would suffice. Ignoring the grouping
structure, I can fit this using nls with the port algorithm by
restricting the upper value of alpha
2006 Oct 27
1
Using data and subset arguments in user-defined functions
Dear list,
A while ago, I posted a question asking how to use data or subset
arguments in a user-defined function. Duncan Murdoch suggested the
following solution in the context of a data argument:
data <- data.frame(a=c(1:10),b=c(1:10))
eg.fn <- function(expr, data) {
x <- eval(substitute(expr), envir=data)
return(mean(x))
}
eg.fn(a,data)
I've
2014 Jun 13
3
p values con LMER
Hola Manuel
lo he tratado de hacer pero me sale
Error: unexpected string constante in:
"anova(a,as,test=Chisq")
no tengo ni idea de por qué...
Me resulta alucinante no poder contar ya con pvals.fnc. ¿Será imposible hacerse con ello?
Saludos,
Miguel
--------------------------------------------
El vie, 13/6/14, Manuel Azcárate <mazcarategarcia en gmail.com> escribió:
2005 Apr 26
10
Ctrl-c crashes R when run as sudo (PR#7819)
I tried to submit this in R, but not sure if it worked.
When running R as sudo, using ctrl-c dumps me to the command line.
Hitting exit to exit the terminal window results in R taking 100% of
resources.
I am using R-2.1.0 on Fedora Core 3.
Thanks.
Manuel
2007 Jul 17
1
Alternative to xyplot()?
Hello list,
Is anyone aware of a non-lattice-based alternative to xyplot()?
Thanks!
Manuel
--
http://mutualism.williams.edu
2009 Jun 11
1
Restrict AIC comparison to succesful models?
Hello list,
I'm doing a bootstrap analysis where some models occasionally fail to
converge. I'd like to automate the process of restricting AIC to the
models that do converge. A contrived example of what I'd like to do is
below:
resp <- c(1,1,2)
pred <- c(1,2,3)
m1 <- lm(resp~pred)
m2 <- lm(resp~poly(pred,2))
m3 <- lm(resp~poly(pred,3)) # Fails, obviously
## Some
2014 Jun 13
3
p values con LMER
Existe discusión sobre el uso de los p-valores en modelos mixtos. Como se
ha dicho antes, para mi lo más adecuado es comparar modelos mediante la
función anova. Por Internet se puede encontrar un buen libro de Douglas
Bates y en español, busca modelos mixtos con R de Luis Cayuela, enfocado
hacia ecología, pero está muy bien
El 13/06/2014 14:00, "Jorge I Velez"
2019 May 19
2
Parameterización de modelo mixto (multilevel)
Estimados integrantes de la lista.
Disculpas por posteo cruzado.
Estoy ajustando un modelo con lmer (lm4).
La variable respuesta es un índice (ADI) que se midió en 3 áreas diferentes
en 4 estaciones climáticas diferentes, así mis efectos fijos son area y
estaciones climáticas.
Cada área tiene 12 puntos de muestreo (Punto).
En cada punto de muestreo el índice se midió repetidamente a
2014 Jun 13
2
p values con LMER
Hola a todos,
quería preguntaros un medio para obtener los valores p usando lmer. He tratado con pvals.fnc, que es lo que me habían recomendado, pero por algún motivo no está ya disponible etc.
Ésta es la función que tengo, pero da las "t", sin los valores p. Aunque Baayen indica que valores por encima de 2 son significativos necesito saber las p.
resultado = lmer(rt_ln ~ (fre_ln *
2016 Oct 29
3
Modelo mixto en R
Hola quisiera saber como parameterizar el siguiente diseño con lme4.
Tengo 4 tratamientos, con 4 parcelas cada uno, divididas a su vez en 4
subparcelas, y se han tomado 5 medidas repetidas (5 ocasiones) y se quiere
ver el cambio en la variable respuesta producido por los tratamientos a
través de las 5 ocasiones.
Mi intento con lmer es el siguiente:
mod <- lmer(variable respuesta ~ ocasión *
2006 Jan 10
1
extracting coefficients from lmer
Dear R-Helpers,
I want to compare the results of outputs from glmmPQL and lmer analyses.
I could do this if I could extract the coefficients and standard errors
from the summaries of the lmer models. This is easy to do for the glmmPQL
summaries, using
> glmm.fit <- try(glmmPQL(score ~ x*type, random = ~ 1 | subject, data = df,
family = binomial), TRUE)
> summary(glmmPQL.fit)$tTable
2016 Nov 01
4
Modelo mixto en R
Hola Olivier,
Adjunto los datos.
Manuel
El 31 de octubre de 2016, 3:29, Olivier Nuñez <onunez en unex.es> escribió:
> Manuel,
>
> no estoy seguro de entender el diseño.
> Cada parcela recibe los 4 tratamientos (un tratamiento por subparcela de
> una misma parcela)?
> Las "ocasiones" (supongo que instantes) son los mismos para cada
> parcela*tratamiento?
2006 Jan 06
1
lmer p-vales are sometimes too small
This concerns whether p-values from lmer can be trusted. From
simulations, it seems that lmer can produce very small, and probably
spurious, p-values. I realize that lmer is not yet a finished product.
Is it likely that the problem will be fixed in a future release of the
lme4 package?
Using simulated data for a quite standard mixed-model anova (a balanced
two-way design; see code for the
2005 Dec 01
3
Strange Estimates from lmer and glmmPQL
I'm trying to fit a generalized mixed effects model to a data set where
each subject has paired categorical responses y (so I'm trying to use a
binomial logit link). There are about 183 observations and one
explanatory factor x. I'm trying to fit something like:
(lmer(y~x+(1|subject)))
I also tried fitting the same type of model using glmmPQL from MASS. In
both cases, I get a
2009 Apr 15
2
AICs from lmer different with summary and anova
Dear R Helpers,
I have noticed that when I use lmer to analyse data, the summary function
gives different values for the AIC, BIC and log-likelihood compared with the
anova function.
Here is a sample program
#make some data
set.seed(1);
datx=data.frame(array(runif(720),c(240,3),dimnames=list(NULL,c('x1','x2','y'
))))
id=rep(1:120,2); datx=cbind(id,datx)
#give x1 a