similar to: predict function problem for glmmPQL

Displaying 20 results from an estimated 3000 matches similar to: "predict function problem for glmmPQL"

2004 Nov 09
1
Some questions to GLMM
Hello all R-user I am relative new to the R-environment and also to GLMM, so please don't be irritated if some questions don't make sense. I am using R 2.0.0 on Windows 2000. I investigated the occurrence of insects (count) in different parts of different plants (plantid) and recorded as well some characteristics of the plant parts (e.g. thickness). It is an unbalanced design with 21
2020 Jun 05
3
líneas sobre un mapa
Gracias Emilio y Jorge. Tengo que explicarlo mejor. Mostrando a una audiencia cómo hacer un tipo de análisis, se hace un loop (abajo) que analiza un mapa por regiones longitudinales. Tal y como está el script, print(i) te indica la longitud por la que va (de 10º en 10º) pero me gustaría que en vez de eso te fuese representando una línea vertical sobre el mapa, que he representado previamente con
2006 Mar 10
1
need help in tune.nnet
Dear R people, I want to use the tune.nnet function of e1071 package to tune nnet . I am unable to understand the parameters of tune.nnet from the e1071 pdf document. I have performed nnet on a traindata and want to test it for class prediction with a testdata. I want to know the values of size,decay,range etc. parameters for which the prediction of testdata is best. Can anyone please tell me
2006 Mar 24
1
predict.glmmPQL Problem
Dear all, for a cross-validation I have to use predict.glmmPQL() , where the formula of the corresponding glmmPQL call is not given explicitly, but constructed using as.formula. However, this does not work as expected: x1<-rnorm(100); x2<-rbinom(100,3,0.5); y<-rpois(100,2) mydata<-data.frame(x1,x2,y) library(MASS) # works as expected model1<-glmmPQL(y~x1, ~1 | factor(x2),
2009 Aug 25
1
Clogit or LRM?
Hello I believe that I'm getting very close in my modeling application. I've come across a challenge that I am unable to solve and would really appreciate the group's opinion. I've been using the val.prob function from the Design library (Thanks Frank!!) to both evaluate and visualize my model. From the scores and graph, it appears as my model is very accurate in
2012 Jan 09
1
glmmPQL and predict
Is the labeling/naming of levels in the documentation for the predict.glmmPQL function "backwards"? The documentation states "Level values increase from outermost to innermost grouping, with level zero corresponding to the population predictions". Taking the sample in the documentation: fit <- glmmPQL(y ~ trt + I(week > 2), random = ~1 | ID, family =
2003 Apr 22
1
glmmPQL and additive random effects?
I'm a bit puzzled by how to write out additive random effects in glmmPQL. In my situation, I have a factorial design on two (categorical) random factors, A and B. At each combination, I have a binary response, y, and two binary fixed covariates, C and D. If everything were fixed, I would use glm(y ~ A + B + C + D, family = binomial) My first thought was to use glmmPQL(y ~ A + B, random
2006 Apr 10
1
Weights in glmmPQL
Hello, I am using the R function glmmPQL to fit a logistic GLMM, with weights. I am finding that I get fairly different parameter estimates in glmmPQL from fitting the full dataset (with no "weight" statement) and an equivalent, shorter dataset with the weights statement. I am using the weights statement in the 'glmmPQL' function exactly as in the 'glm' function. I
2013 Jul 11
1
Differences between glmmPQL and lmer and AIC calculation
Dear R Community, I?m relatively new in the field of R and I hope someone of you can help me to solve my nerv-racking problem. For my Master thesis I collected some behavioral data of fish using acoustic telemetry. The aim of the study is to compare two different groups of fish (coded as 0 and 1 which should be the dependent variable) based on their swimming activity, habitat choice, etc.
2005 Aug 20
1
glmmPQL and Convergence
I fit the following model using glmmPQL from MASS: fit.glmmPQL <- glmmPQL(ifelse(class=="Disease",1,0)~age+x1+x2,random=~1|subject,family=binomial) summary(fit.glmmPQL) The response is paired (pairing denoted by subject), although some subjects only have one response. Also, there is a perfect positive correlation between the paired responses. x1 and x2 can and do differ within each
2005 Dec 27
2
glmmPQL and variance structure
Dear listers, glmmPQL (package MASS) is given to work by repeated call to lme. In the classical outputs glmmPQL the Variance Structure is given as " fixed weights, Formula: ~invwt". The script shows that the function varFixed() is used, though the place where 'invwt' is defined remains unclear to me. I wonder if there is an easy way to specify another variance
2005 Sep 04
1
specification for glmmPQL
Hello All, I have a question regarding how glmmPQL should be specified. Which of these two is correct? summary(fm.3 <- glmmPQL(cbind(response, 100 - response) ~ expt, data = data.1, random = ~ 1 | subject, family = binomial)) summary(fm.4 <- glmmPQL(response ~ expt, data = data.2, random = ~ 1 | subject, family =
2005 Oct 19
1
anova with models from glmmPQL
Hi ! I try to compare some models obtained from glmmPQL. model1 <- glmmPQL(y~red*yellow+I(red^2)+I(yellow^2)+densite8+I(densite8^2)+freq8_4 +I(freq8_4^2), random=~1|num, binomial); model2 <- glmmPQL(y~red*yellow+I(red^2)+I(yellow^2)+densite8+I(densite8^2)+freq8_4 , random=~1|num, binomial); anova(model1, model2) here is the answer : Erreur dans anova.lme(model1, model2) : Objects must
2004 Mar 06
2
GlmmPQL with binomial errors
Hi all! I hope somebody can help me solve some doubts which must be very basic, but I haven't been able to solve by myself. The first one, is how to assess for overdispersion in GlmmPQL when fitting binomial or poisson errors. The second one is whether GlmmPQL can compare models with different fixed effects. The third doubt, regards the way I should arrange my data in a GlmmPQL with
2009 Oct 21
1
odd evaluation within correlation argument of glmmPQL
[I think I've seen this reported before but can't locate it any more. I believe this oddity (glitch? feature?) is behind a query that Jean-Baptiste Ferdy asked a year ago <http://finzi.psych.upenn.edu/Rhelp08/2008-October/176449.html>] It appears that glmmPQL looks in the global workspace, not within the data frame specified by the "data" argument, for the variables
2020 Jun 05
2
líneas sobre un mapa
Buenos días ¿sabéis si hay alguna forma de añadir una recta vertical sobre un mapa hecho previamente con ggplot? Lo que hago ahora es cargar nuevamente el mapa con la línea añadida (una serie de líneas añadidas secuencialmente en un loop) pero me gustaría que añadiese las líneas sin cargar nuevamente el mapa. Gracias, Manuel [[alternative HTML version deleted]]
2008 Sep 02
1
plotting glmmPQL function
hello all, i'm an R newbie struggling a bit with the glmmPQL function (from the nlme pack). i think i've managed to run the model successfully, but can't seem to plot the resulting function. plot(glmmPQL(...)) plots the residuals rather than the model... i know this should be basic, but i can't seem to figure it out. many thanks in advance. j -- View this message in context:
2003 Jan 14
1
glmmPQL and anova
Dear R-users, I have conducted an experiment with a 2*2*2 factorial within-subjects design. All factors are binary and the dependent measure is a frequency of successes between 0 and 4. Treating this as a normally distributed variable, I would perform a repeated-measures ANOVA as follows: > aov(y ~ A*B*C + Error(subj/(A+B+C))) but since the distribution of the dependent measure is clearly
2004 Jun 09
1
GlmmPQL
Dear all, I have two questions concerning model simplification in GlmmPQL, for for random and fixed effects: 1. Fixed effects: I don't know if I can simply specify anova(model) and trust the table that comes up with the p value for each variable in the fixed effects formula. I have read that the only way to test for fixed effects is to do approximate wald tests based on the standard errors
2004 Mar 20
1
contrast lme and glmmPQL and getting additional results...
I have a longitudinal data analysis project. There are 10 observations on each of 15 units, and I'm estimating this with randomly varying intercepts along with an AR1 correction for the error terms within units. There is no correlation across units. Blundering around in R for a long time, I found that for linear/gaussian models, I can use either the MASS method glmmPQL (thanks to