similar to: Frailty by strata interactions in coxph (or coxme)?

Displaying 20 results from an estimated 1000 matches similar to: "Frailty by strata interactions in coxph (or coxme)?"

2007 Apr 20
1
Approaches of Frailty estimation: coxme vs coxph(...frailty(id, dist='gauss'))
Dear List, In documents (Therneau, 2003 : On mixed-effect cox models, ...), as far as I came to know, coxme penalize the partial likelihood (Ripatti, Palmgren, 2000) where as frailtyPenal (in frailtypack package) uses the penalized the full likelihood approach (Rondeau et al, 2003). How, then, coxme and coxph(...frailty(id, dist='gauss')) differs? Just the coding algorithm, or in
2012 Feb 03
1
coxme with frailty--variance of random effect?
Dear all, This probably stems from my lack of understanding of the model, but I do not understand the variance of the random effect reported in coxme. Consider the following toy example: #------------------------------- BEGINNING OF CODE ------------------------------------------------ library(survival) library(coxme) #--- Generate toy data: d <- data.frame(id = c(1:100), #
2012 Feb 10
0
coxme with frailty
A couple of clarifications for you. 1. I write mixed effects Cox models as exp(X beta + Z b), beta = fixed effects coefficients and b = random effects coefficients. I'm using notation that is common in linear mixed effects models (on purpose). About 2/3 of the papers use exp(X beta)* c, i.e., pull the random effects out of the exponent. Does it make a difference? Not much: b will be
2007 Dec 05
4
coxme frailty model standard errors?
Hello, I am running R 2.6.1 on windows xp I am trying to fit a cox proportional hazard model with a shared Gaussian frailty term using coxme My model is specified as: nofit1<-coxme(Surv(Age,cen1new)~ Sex+bo2+bo3,random=~1|isl,data=mydat) With x1-x3 being dummy variables, and isl being the community level variable with 4 levels. Does anyone know if there is a way to get the standard error
2011 Jul 27
0
: Re: coxme frailty model standard errors?
-- begin included message -- Hi, but why we do the difference : ltemp <- 2 * diff(tfit $loglik[1:2]) ?? Where I can find information about Integrate Likelihooh and null like lihood?? --- end inclusion --- 1. Basic statistical fact: 2 * difference in loglik between two nested models = distributed as a chi-square distribution. For coxme loglik[1] = likelihood from a null model (all coefs
2018 Mar 28
0
coxme in R underestimates variance of random effect, when random effect is on observation level
Hello, I have a question concerning fitting a cox model with a random intercept, also known as a frailty model. I am using both the coxme package, and the frailty statement in coxph. Often 'shared' frailty models are implemented in practice, to group people who are from a cluster to account for homogeneity in outcomes for people from the same cluster. I am more interested in the classic
2008 Feb 21
2
Nested frailty model
Dear R-help, I am trying to estimate a Cox model with nested effects, or better h(t,v,w)=v*w*h0(t)*exp(B'x) where h(t,v,w) is the individual hazard function w and v are both frailty terms (gamma or normal distributed) I have 12 clusters and for each one of them I would like to associate a realization of v, while w is a random effect for the whole population. At the population level
2011 Jun 25
2
cluster() or frailty() in coxph
Dear List, Can anyone please explain the difference between cluster() and frailty() in a coxph? I am a bit puzzled about it. Would appreciate any useful reference or direction. cheers, Ehsan > marginal.model <- coxph(Surv(time, status) ~ rx + cluster(litter), rats) > frailty.model <- coxph(Surv(time, status) ~ rx + frailty(litter), rats) > marginal.model Call: coxph(formula =
2012 Dec 03
1
fitting a gamma frailty model (coxph)
Dear all, I have a data set<http://yaap.it/paste/c11b9fdcfd68d02b#gIVtLrrme3MaiQd9hHy1zcTjRq7VsVQ8eAZ2fol1lUc=>with 6 clusters, each containing 48 (possibly censored, in which case "event = 0") survival times. The "x" column contains a binary explanatory variable. I try to describe that data with a gamma frailty model as follows: library(survival) mod <-
2005 Oct 06
1
Testing strata by covariate interactions in coxph
Dear list members, I am working with a Cox ph model for the duration of unemployment. The event of interest in my analysis is getting employed. I have various background variables explaining this event: age, sex, education etc. I have multiple unemployment spells per person. I use a model with person-specific frailty terms in order to take into account the correlation of spells by the same
2007 Apr 20
1
Hiding "Warning messages" in coxme output
Dear list, I have been trying to use coxme in R 2.3.1. When I use coxme in the following data sim.fr1, i get "Warning messages: using 'as.environment(NULL)' is deprecated" Why does it occur? How can I hide such warning message, especially when coxme is under a loop? Mohammad Ehsanul Karim (Institute of Statistical Research and Training, University of Dhaka) >
2003 May 07
0
frailty models in survreg() -- survival package (PR#2933)
I am confused on how the log-likelihood is calculated in a parametric survival problem with frailty. I see a contradiction in the frailty() help file vs. the source code of frailty.gamma(), frailty.gaussian() and frailty.t(). The function frailty.gaussian() appears to calculate the penalty as the negative log-density of independent Gaussian variables, as one would expect: >
2003 May 07
0
Re: frailty models in survreg() -- survival package (PR#2934)
On Tue, 6 May 2003, Jerome Asselin wrote: > > I am confused on how the log-likelihood is calculated in a parametric > survival problem with frailty. I see a contradiction in the frailty() help > file vs. the source code of frailty.gamma(), frailty.gaussian() and > frailty.t(). > > The function frailty.gaussian() appears to calculate the penalty as the > negative
2004 Nov 08
1
coxph models with frailty
Dear R users: I'm generating the following survival data: set.seed(123) n=200 #sample size x=rbinom(n,size=1,prob=.5) #binomial treatment v=rgamma(n,shape=1,scale=1) #gamma frailty w=rweibull(n,shape=1,scale=1) #Weibull deviates b=-log(2) #treatment's slope t=exp( -x*b -log(v) + log(w) ) #failure times c=rep(1,n) #uncensored indicator id=seq(1:n) #individual frailty indicator
2011 Apr 05
0
frailty
Hi R-users I spend a lot of time searching on the web but I didn?t found a clear answer. I have some doubts with 'frailty' function of 'survival' package. The following model with the function R ?coxph? was fitted: modx <- coxph(Surv(to_stroke, stroke) ~ age + sbp + dbp + sex + frailty(center,distribution = "gamma", method='aic'), data=datax) Then I get
2007 Apr 08
0
Simulation of the Frailty of the Cox PH model
Dear R-list users, I am trying to do simulation of survival data to enable it to run under frailty option. Below is the function a that I am using. My questions are: 1. How do I modify it to get bigger (hopefully significant) value of Variance of random effect? 2. What changes do I have to make in the function to run it under correlated frailty model? (may be in kinship package) 3. Is there
2006 Sep 19
0
How to interpret these results from a simple gamma-frailty model
Dear R users, I'm trying to fit a gamma-frailty model on a simulated dataset, with 6 covariates, and I'm running into some results I do not understand. I constructed an example from my simulation code, where I fit a coxph model without frailty (M1) and with frailty (M2) on a number of data samples with a varying degree of heterogeneity (I'm running R 2.3.1, running takes ~1 min).
2006 Sep 21
0
Any examples of a frailty model actually used for prediction ?
Hi everyone, I'm looking for any examples of useful frailty models, in particular any situation in which a cox proportional hazards model with frailty outperforms a regular cox proportional hazards model with respect to prediction of the time to event (or the X-year risk of an event). I have defined my own gamma-frailty cox PH model in R but on my simulated data sample it does not predict any
2006 Sep 22
0
$theta of frailty in coxph
Dear all, Does the frailty.object$history[[1]]$theta returns the Variance of random effect? Why is the value different? Here is an example with kidney data: > library(survival) > data(kidney) > frailty.object<-coxph(Surv(time, status)~ age + sex + disease + frailty(id), kidney) > frailty.object Call: coxph(formula = Surv(time, status) ~ age + sex + disease + frailty(id), data
2005 May 31
1
Shared Frailty in survival package (left truncation, time-dep. covariates)
Dear list, I want o fit a shared gamma frailty model with the frailty specification in the survival package. I have partly left-truncated data and time-dependent covariates. Is it possible to combine these two things in the frailty function. Or are the results wrong if I use data in the start-stop-formulation which account for delayed entry? Is the frailty distribution updated in the