similar to: ggplot2; dot plot, jitter, and error bars

Displaying 20 results from an estimated 700 matches similar to: "ggplot2; dot plot, jitter, and error bars"

2012 Oct 08
6
How to use Lines function to draw the error bars?
fit lwr upr 1 218.4332 90.51019 346.3561 2 218.3906 90.46133 346.3198 3 218.3906 90.46133 346.3198 4 161.3982 44.85702 277.9394 5 192.4450 68.39903 316.4909 6 179.8056 56.49540 303.1158 7 219.5406 91.52707 347.5542 8 162.6761 46.65760 278.6945 9 193.8506 70.59838 317.1029 10 181.3816 58.11305 304.6502 11 221.2871 92.14366 350.4305 12 164.2947 47.91081 280.6785 13
2011 Apr 03
1
style question
Hi everyone, I am trying to build a table putting standard errors horizontally. I haven't been able to do it. library(memisc) berkeley <- aggregate(Table(Admit,Freq)~.,data=UCBAdmissions) berk0 <- glm(cbind(Admitted,Rejected)~1,data=berkeley,family="binomial") berk1 <- glm(cbind(Admitted,Rejected)~Gender,data=berkeley,family="binomial") berk2 <-
2006 Sep 15
2
prediction interval for new value
Hi, 1. How do I construct 95% prediction interval for new x values, for example - x = 30000? 2. How do I construct 95% confidence interval? my dataframe is as follows : >dt structure(list(y = c(26100000, 60500000, 16200000, 30700000, 70100000, 57700000, 46700000, 8600000, 10000000, 61800000, 30200000, 52200000, 71900000, 55000000, 12700000 ), x = c(108000, 136000,
2013 Jan 30
2
How does predict() calculate prediction intervals?
For a given linear regression, I wish to find the 2-tailed t-dist probability that Y-hat <= newly observed values. I generate prediction intervals in predict() for plotting, but when I calculate my t-dist probabilities, they don't agree. I have researched the issues with variance of individual predictions and been advised to use the variance formula below (in the code). I presume my
2016 Apr 21
5
Calcular Error en modelo lineal
Enun ejemplo real estoy viendo como el intervalo de confianza usando lo que me comentas me ha salido mucho más pequeño de lo que la realidad luego refleja. ¿Cómo es esto posible?? Es decir, veo que para valores de 2,70 obtengo una respuesta de entre 2,69 y 2,90 y sin embargo luego en la realidad tengo valores entre 2,20 y 3 Gracias Jesús From: jorgeivanvelez en gmail.com Date: Thu, 21 Apr
2013 Sep 22
2
colores
Como usas la función image puedes consultar la ayuda ?image o help(image) y encontrarás el siguiente ejemplo donde se usa un diferente color Palette (mencionada por pepeceb en su respuesta). x <- 10*(1:nrow(volcano)) y <- 10*(1:ncol(volcano)) image(x, y, volcano, col = terrain.colors(100), axes = FALSE) # O puedes usar directamente el número para indicar el color image(x, y, volcano, col =
2012 Nov 13
2
Tukey test for subgroups in a data frame
Hello, I have a data frame with the following columns: "date","name","value" the name is the same for each date I would like to get TukeyHSD p-value for the differences of "value" between "name"s in each "date" separately I tried different ANOVA (aov()) but can only get either tukey by "name" or by "data" but not
2010 Jul 27
1
problem with zero-weighted observations in predict.lm?
In modelling functions some people like to use a weight of 0 to drop an observation instead of using a subset value of FALSE. E.g., weights=c(0,1,1,...) instead of subset=c(FALSE, TRUE, TRUE, ...) to drop the first observation. lm() and summary.lm() appear to treat these in the same way, decrementing the number of degrees of freedom for each dropped observation. However, predict.lm() does
2009 Sep 04
1
predicting from segmented regression
Hello I'm having trouble figuring out how to use the output of "segmented()" with a new set of predictor values. Using the example of the help file: ??set.seed(12) xx<-1:100 zz<-runif(100) yy<-2+1.5*pmax(xx-35,0)-1.5*pmax(xx-70,0)+15*pmax(zz-.5,0)+rnorm(100,0,2) dati<-data.frame(x=xx,y=yy,z=zz) out.lm<-lm(y~x,data=dati) o<-## S3
2013 May 17
2
zigzag confidence interval in a plot
Dear All, When I plot the values and linear regression line for one data set, it is fine. But for another one I see zigzags, when I plot the confidence interval >cd Depth CHAOsep12RNA 9,94 804 25,06 1476,833333 40,04 1540,561404 50,11 1575,166667 52,46 349,222222 54,92 1941,5 57,29 1053,507042 60,11 1535,1 70,04 2244,963303 79,97 1954,507042 100,31 2679,140625 >
2016 Apr 21
2
Calcular Error en modelo lineal
Buenas, una pregunta. Si yo estoy calculando un modelo lineal, el caso más simple, 1 variable respuesta y una variable explicativa y creo un modelo, me da un R2 del 80% y quiero ver como es esa relacion entre las variables, para calcular el error de predicción del modelo, basta con ver el intervalo de confianza del modelo e irme a los extremos? Por si no me he expresado bien, un ejemplo tonto:
2017 Jun 12
2
plotting gamm results in lattice
Dear all,? I hope that you can help me on this. I have been struggling to figure this out but I haven't found any solution. I am running a generalised mixed effect model, gamm4, for an ecology project. Below is the code for the model: model<-gamm4(LIFE.OE_spring~s(Q95, by=super.end.group)+Year+Hms_Rsctned+Hms_Poaching+X.broadleaved_woodland? ? ? ? ? ? ?+X.urban.suburban+X.CapWks,
2010 Apr 29
1
R Anova Analysis
Dear all, I have a quite basic questions about anova analysis in R, sorry for this, but I have no clue how to explain this result. I have two datasets which are named: nmda123, nmda456. Each dataset has three samples which were measured three times. And I would like to compare means of them with Posthoc test using R, following please see the output: (CREB, mCREB and No virus are the name of
2010 Jun 21
1
glm, poisson and negative binomial distribution and confidence interval
Dear list, I am using glm's to predict count data for a fish species inside and outside a marine reserve for three different methods of monitoring. I run glms and figured out the best model using step function for each methods used. I predicted two values for my fish counts inside and outside the reserve using means of each of the covariates (using predict() ) therefore I have only one value
2007 Mar 02
4
significant anova but no distinct groups ?
Dear all, I am studying a dataset using the aov() function. The independant variable 'cds' is a factor() with 8 levels and here is the result in studying the dependant variable 'rta' with aov() : > summary(aov(rta ~ cds)) Df Sum Sq Mean Sq F value Pr(>F) cds 7 0.34713 0.04959 2.3807 0.02777 Residuals 92 1.91635 0.02083 The dependant variable
2010 Oct 22
2
visualize TukeyHSD results
I am a new R user but a long time SAS user. I searched for a response to this question but no luck, so forgive me if this topic has been covered before. I am running a TukeyHSD post hoc test after running an ANOVA. I get the results of all pairwise comparisons, no problem. However, the output table is a little "busy", and I'd like to make the output easier to read. Specifically, I
2010 Jan 11
1
HoltWinters Forecasting
Hi R-users, I have a question relating to the HoltWinters() function. I am trying to forecast a series using the Holt Winters methodology but I am getting some unusual results. I had previously been using R for Windows version 2.7.2 and have just started using R 2.9.1. While using version 2.7.2 I was getting reasonable results however upon changing versions I found I started to see unusual
2017 Jun 12
0
plotting gamm results in lattice
Hi Maria If you have problems just start with a small model with predictions and then plot with xyplot the same applies to xyplot Try library(gamm4) spring <- dget(file = "G:/1/example.txt") str(spring) 'data.frame': 11744 obs. of 11 variables: $ WATERBODY_ID : Factor w/ 1994 levels "GB102021072830",..: 1 1 2 2 2 3 3 3 4 4 ... $ SITE_ID
2002 Nov 15
5
confidence interval in "predict.lm"
I am studying statistics using R and a book "Understandable Statistics", by Brase and Brase. The book has two worked examples for calculating a confidence interval around a predicted value from a linear model. The answers to the two examples in the book differ from those I get from R. The regression line, the standard error, and the predicted value in R and the book all agree for the
2000 Aug 03
1
multiple comparison tests & simultaneous multiple plots
I am not sure if my message made it through, so here it is again! Hi Rer's, R-1.1.0 I have two questions for you: 1) I am trying to complete a multiple comparison test after completing a one-way ANOVA on some data. I think this is pretty reasonable. aov(MetricSubset ~ GeneNameFactor) works pairwise.t.test(MetricSubset,GeneNameSubset,p.adjuxt.method=bonferroni,p ool.sd=FALSE)