similar to: Need help imputing missing data using mice and outputting them

Displaying 20 results from an estimated 4000 matches similar to: "Need help imputing missing data using mice and outputting them"

2012 Dec 08
1
imputation in mice
Hello! If I understand this listserve correctly, I can email this address to get help when I am struggling with code. If this is inaccurate, please let me know, and I will unsubscribe. I have been struggling with the same error message for a while, and I can't seem to get past it. Here is the issue: I am using a data set that uses -1:-9 to indicate various kinds of missing data. I changed
2012 Aug 17
0
impute multilevel data in MICE
Dear list, I have a question about imputing 2 level data in MICE, could you give me some suggestions please? Thank you very much. The data set contains 35634 cases and 1007 variables, 280 of them are categorical variables, and the rest of them are continuous variables. On the second level, there are 198 units. I am trying to impute missing values for 270 categorical variables by using the
2011 Jul 25
0
Debugging multiple imputation in mice
Hello all, I am trying to impute some missing data using the mice package. The data set I am working with contains 125 variables (190 observations), involving both categorical and continuous data. Some of these variables are missing up to 30% of their data. I am running into a peculiar problem which is illustrated by the following example showing both the original data (blue) and the imputed
2006 Oct 30
0
how to combine imputed data-sets from mice for classfication
Dear R users I want to combine multiply imputed data-sets generated from mice to do classfication. However, I have various questions regarding the use of mice library. For example suppose I want to predict the class in this data.frame: data(nhanes) mydf=nhanes mydf$class="pos" mydf$class[sample(1:nrow(mydf), size=0.5*nrow(mydf))]="neg" mydf$class=factor(mydf$class) First I
2009 Apr 24
1
Multiple Imputation in mice/norm
I'm trying to use either mice or norm to perform multiple imputation to fill in some missing values in my data. The data has some missing values because of a chemical detection limit (so they are left censored). I'd like to use MI because I have several variables that are highly correlated. In SAS's proc MI, there is an option with which you can limit the imputed values that are
2011 Jul 20
1
Calculating mean from wit mice (multiple imputation)
Hi all, How can I calculate the mean from several imputed data sets with the package mice? I know you can estimate regression parameters with, for example, lm and subsequently pool those parameters to get a point estimate using functions included in mice. But if I want to calculate the mean value of a variable over my multiple imputed data sets with fit <- with(data=imp, expr=mean(y)) and
2009 Sep 10
0
new version of R-package mice
Dear R-users, Version V2.0 of the package mice is now available on CRAN for Windows, Linux and Apple users. Multivariate Imputation by Chained Equations (MICE) is the name of software for imputing incomplete multivariate data by Fully Conditional Specifcation (FCS). MICE V1.0 appeared in the year 2000 as an S-PLUS library, and in 2001 as an R package. MICE V1.0 introduced predictor selection,
2009 Sep 10
0
new version of R-package mice
Dear R-users, Version V2.0 of the package mice is now available on CRAN for Windows, Linux and Apple users. Multivariate Imputation by Chained Equations (MICE) is the name of software for imputing incomplete multivariate data by Fully Conditional Specifcation (FCS). MICE V1.0 appeared in the year 2000 as an S-PLUS library, and in 2001 as an R package. MICE V1.0 introduced predictor selection,
2006 Mar 24
0
Imputing NAs using transcan(); impute()
Dear all, I'm trying to impute NAs by conditional medians using transcan() in conjunction with impute.transcan(). ... see and run attached example.. Everything works fine, however impute() returns saying Under WINDOWS > x.imputed <- impute(trans) Fehler in assign(nam, v, where = where.out) : unbenutzte(s) Argument(e) (where ...) Zus?tzlich: Warnmeldung: variable X1 does not
2012 Oct 19
0
impute multilevel data in MICE
Dear list, Is there any one use MICE package deal with multilevel missing values here? I have a question about the 2lonly.pmm() and 2lonly.norm(), I get the following error quite often. Here is the code the error, could you give me some advice please? Am I using it in the right way? > ini=mice(bhrm,maxit=0) > pred=ini$pred > pred V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15
2006 Sep 25
2
Multiple imputation using mice with "mean"
Hi I am trying to impute missing values for my data.frame. As I intend to use the complete data for prediction I am currently measuring the success of an imputation method by its resulting classification error in my training data. I have tried several approaches to replace missing values: - mean/median substitution - substitution by a value selected from the observed values of a variable - MLE
2011 Dec 09
2
Help with the Mice Function
Hi, I am attempting to impute my data for missing values using the mice function. However everytime I run the function it freezes or lags. I have tried running it over night, and it still does not finish. I am working with 17000 observations across 32 variables. here is my code: imputed.data = mice(data, + m = 1, + diagnostics = F) Thank you in advance, Richard [[alternative HTML version
2011 Apr 01
0
package MICE, squeeze function, calling several variables at once
Hello everyone!I have a data set with missing observations that I am trying to impute. I am using MICE and I would like the imputed values to all be positive. I have two types of variables: prices (P1 to P136) and quantities (Q1 to Q136) and I also want the range of these two types to be different. Besides these variables. I am using the squeeze function but I am unable to set it such that I
2016 Apr 10
0
logistic regression with package 'mice'
Dear all, I request your help to solve a problem I've encountered in using 'mice' for multiple imputation. I want to apply a logistic regression model. I need to extract information on the fit of the model. Is there any way to calculate a likelihood ratio or the McFadden-pseudoR2 from the results of the logistic model? I mean, as it is possible to extract pooled averaging and odds
2007 Nov 30
0
problem using MICE with option "lda"
Hi I am unable to impute using the MICE command in R when imputing a binary variable using linear discriminant analysis. To illustrate my problem I have created a dataset, which consists of 1 continuous and 1 binary variable. The continuous variable is complete and the binary variable is partially observed. I am able to impute using the MICE command where the imputation methods is logistic
2012 Mar 07
0
Multiple imputation using mice
Dear all, I am trying to impute data for a range of variables in my data set, of which unfortunately most variables have missing values, and some have quite a few. So I set up the predictor matrix to exclude certain variables (setting the relevant elements to zero) and then I run the imputation. This works fine if I use predictive mean matching for the continous variables in the data set. When I
2006 Mar 01
1
mice library / survival analysis
Hello folks, I am a relatively new user of R and created multiply imputed data sets with the 'mice' library. This library provides two functions for complete-data analysis on multiply imputed data set objects (lm.mids and glm.mids). I am trying to estimate a series of Cox PH regression models and cannot figure out the best way to do this. Is it possible with the mitools library?
2012 Mar 30
3
pooling in MICE
Hi everyone, Does anyone here has experience using MICE to impute missing value? I am having problem to pool the imputed dataset for a MANOVA test, could you give me some advice please? Here is my code: > library(mice) >
2010 Aug 09
0
permanova on MICE object
Hi everyone! I have data consisting of several response variables and several explanatory variables. I wish to do a permanova on this using the vegan library and the adonis() function. However, my data had several missing values in it. In order to 'fix' this I used the mice() function from the mice library to make 5 imputations for all the missing values. To do analysis on the 5 datasets
2008 Nov 26
1
multiple imputation with fit.mult.impute in Hmisc - how to replace NA with imputed value?
I am doing multiple imputation with Hmisc, and can't figure out how to replace the NA values with the imputed values. Here's a general ourline of the process: > set.seed(23) > library("mice") > library("Hmisc") > library("Design") > d <- read.table("DailyDataRaw_01.txt",header=T) > length(d);length(d[,1]) [1] 43 [1] 2666