similar to: distance in kmeans algorithm?

Displaying 20 results from an estimated 4000 matches similar to: "distance in kmeans algorithm?"

2006 Apr 07
2
cclust causes R to crash when using manhattan kmeans
Dear R users, When I run the following code, R crashes: require(cclust) x <- matrix(c(0,0,0,1.5,1,-1), ncol=2, byrow=TRUE) cclust(x, centers=x[2:3,], dist="manhattan", method="kmeans") While this works: cclust(x, centers=x[2:3,], dist="euclidean", method="kmeans") I'm posting this here because I am not sure if it is a bug. I've been searching
2004 May 28
6
distance in the function kmeans
Hi, I want to know which distance is using in the function kmeans and if we can change this distance. Indeed, in the function pam, we can put a distance matrix in parameter (by the line "pam<-pam(dist(matrixdata),k=7)" ) but we can't do it in the function kmeans, we have to put the matrix of data directly ... Thanks in advance, Nicolas BOUGET
2006 Aug 07
5
kmeans and incom,plete distance matrix concern
Hi there I have been using R to perform kmeans on a dataset. The data is fed in using read.table and then a matrix (x) is created i.e: [ mat <- matrix(0, nlevels(DF$V1), nlevels(DF$V2), dimnames = list(levels(DF$V1), levels(DF$V2))) mat[cbind(DF$V1, DF$V2)] <- DF$V3 This matrix is then taken and a distance matrix (y) created using dist() before performing the kmeans clustering. My query
2010 May 05
2
custom metric for dist for use with hclust/kmeans
Hi guys, I've been using the kmeans and hclust functions for some time now and was wondering if I could specify a custom metric when passing my data frame into hclust as a distance matrix. Actually, kmeans doesn't even take a distance matrix; it takes the data frame directly. I was wondering if there's a way or if there's a package that lets you create distance matrices from
2004 Sep 12
2
mahalanobis distance
Is there a function that calculate the mahalanobis distance in R . The dist function calculates "euclidean"', '"maximum"', '"manhattan"', '"canberra"', '"binary"' or '"minkowski"'. Thanks ../Murli
2011 Sep 26
2
Mahalanobis Distance
Hello R helpers, I'm trying to use Mahalanobis distance to calculate distance of two time series, to make some comparations with euclidean distance, DTW, etc, but I'm having some dificults. I have, for example, two objects: s.1 <- c( 5.6324702, 1.3994353, -3.2572327, -3.8311846, -1.2248719, 0.9894694, -2.2835332, -5.1969285, -5.2823988, -3.1499400, -1.7307950, 2.8221209,
2007 Apr 22
2
distance method in kmeans
I am trying to cluster some binary data using k-means . As the regular "kmeans" available from stats package in R does'nt provide the option to change the distance method. I was wondering there is any package available to specify type of distance measure to be used in k means clustering in R. Especially distances like "Jaccard" which is good for binary data.
2010 Jun 22
1
Mahalanobis distance
I am a new R user. i have a question about Mahalanobis distance.actually i have 300 rows and 7 columns. columns are different measurements, 300 rows are genes. since genes can classify into 4 categories. i used dist() with euclidean distance and cmdscale to do MDS plot. but find out Mahalanobis distance may be better. how do i use Mahalanobis() to generate similar dist object which i can use
2012 May 30
1
cluster with mahalanobis distance
How can I perform cluster analysis using the mahalanobis distance instead of the euclidean distance? Thank you Maria Froes [[alternative HTML version deleted]]
2004 Jan 21
1
outlier identification: is there a redundancy-invariant substitution for mahalanobis distances?
Dear R-experts, Searching the help archives I found a recommendation to do multivariate outlier identification by mahalanobis distances based on a robustly estimated covariance matrix and compare the resulting distances to a chi^2-distribution with p (number of your variables) degrees of freedom. I understand that compared to euclidean distances this has the advantage of being scale-invariant.
2010 Mar 03
1
cluster with mahalanobis distance
How can I perform cluster analysis using the mahalanobis distance instead of the euclidean distance? thank you Naama Wolf -- View this message in context: http://n4.nabble.com/cluster-with-mahalanobis-distance-tp1577038p1577038.html Sent from the R help mailing list archive at Nabble.com.
2010 Aug 18
1
Plotting K-means clustering results on an MDS
Hello All, I'm having some trouble figuring out what the clearest way to plot my k-means clustering result on an my existing MDS. First I performed MDS on my distance matrix (note: I performed k-means on the MDS coordinates because applying a euclidean distance measure to my raw data would have been inappropriate) canto.MDS<-cmdscale(canto) I then figured out what would be my optimum
2011 Apr 06
2
Help in kmeans
Hi All, I was using the following command for performing kmeans for Iris dataset. Kmeans_model<-kmeans(dataFrame[,c(1,2,3,4)],centers=3) This was giving proper results for me. But, in my application we generate the R commands dynamically and there was a requirement that the column names will be sent instead of column indices to the R commands.Hence, to incorporate this, i tried using the R
2003 Jun 05
1
kmeans (again)
Regarding a previous question concerning the kmeans function I've tried the same example and I also get a strange result (at least according to what is said in the help of the function kmeans). Apparently, the function is disregarding the initial cluster centers one gives it. According to the help of the function: centers: Either the number of clusters or a set of initial cluster
2013 Mar 13
1
Empty cluster / segfault using vanilla kmeans with version 2.15.2
Hello, here is a working reproducible example which crashes R using kmeans or gives empty clusters using the nstart option with R 15.2. library(cluster) kmeans(ruspini,4) kmeans(ruspini,4,nstart=2) kmeans(ruspini,4,nstart=4) kmeans(ruspini,4,nstart=10) ?kmeans either we got empty always clusters and or, after some further commands an segfault. regards, Detlef Groth ------------ [R] Empty
2004 May 11
1
AW: Probleme with Kmeans...
Sorry, to solve your question I had tried: data(faithful) kmeans(faithful[c(1:20),1],10) Error: empty cluster: try a better set of initial centers But when I run this a second time it will be ok. It seems, that kmeans has problems to initialize good starting points, because of the random choose of these starting initial points. With kmeans(data,k,centers=c(...) the problem can be solved.
2003 Apr 14
2
kmeans clustering
Hi, I am using kmeans to cluster a dataset. I test this example: > data<-matrix(scan("data100.txt"),100,37,byrow=T) (my dataset is 100 rows and 37 columns--clustering rows) > c1<-kmeans(data,3,20) > c1 $cluster [1] 1 1 1 1 1 1 1 3 3 3 1 3 1 3 3 1 1 1 1 3 1 3 3 1 1 1 3 3 1 1 3 1 1 1 1 3 3 [38] 3 1 1 1 3 1 1 1 1 3 3 3 1 1 1 1 1 1 3 1 3 1 1 3 1 1 1 1 3 1 1 1 1 1 1 3
2012 Feb 27
2
kmeans: how to retrieve clusters
Hello, I'd like to classify data with kmeans algorithm. In my case, I should get 2 clusters in output. Here is my data colCandInd colCandMed 1 82 2950.5 2 83 1831.5 3 1192 2899.0 4 1193 2103.5 The first cluster is the two first lines the 2nd cluster is the two last lines Here is the code: x = colCandList$colCandInd y = colCandList$colCandMed m = matrix(c(x, y),
2009 Jul 20
2
kmeans.big.matrix
Hi, I'm playing around with the 'bigmemory' package, and I have finally managed to create some really big matrices. However, only now I realize that there may not be functions made for what I want to do with the matrices... I would like to perform a cluster analysis based on a big.matrix. Googling around I have found indications that a certain kmeans.big.matrix() function should
2008 May 12
2
k means
Hi the devel list, I am using K means with a non standard distance. As far as I see, the function kmeans is able to deal with 4 differents algorithm, but not with a user define distance. In addition, kmeans is not able to deal with missing value whereas there is several solution that k-means can use to deal with them ; one is using a distance that takes the missing value in account, like a