Displaying 20 results from an estimated 7000 matches similar to: "prcomp"
2009 Nov 25
1
which to trust...princomp() or prcomp() or neither?
According to R help:
princomp() uses eigenvalues of covariance data.
prcomp() uses the SVD method.
yet when I run the (eg., USArrests) data example and compare with my own
"hand-written" versions of PCA I get what looks like the opposite.
Example:
comparing the variances I see:
Using prcomp(USArrests)
-------------------------------------
Standard deviations:
[1] 83.732400 14.212402
2004 Jan 15
2
prcomp scale error (PR#6433)
Full_Name: Ryszard Czerminski
Version: 1.8.1
OS: GNU/Linux
Submission from: (NULL) (205.181.102.120)
prcomp(..., scale = TRUE) does not work correctly:
$ uname -a
Linux 2.4.20-28.9bigmem #1 SMP Thu Dec 18 13:27:33 EST 2003 i686 i686 i386
GNU/Linux
$ gcc --version
gcc (GCC) 3.2.2 20030222 (Red Hat Linux 3.2.2-5)
> a <- matrix(rnorm(6), nrow = 3)
> sum((scale(a %*% svd(cov(a))$u, scale
2009 Nov 09
4
prcomp - principal components in R
Hello, not understanding the output of prcomp, I reduce the number of
components and the output continues to show cumulative 100% of the
variance explained, which can't be the case dropping from 8 components
to 3.
How do i get the output in terms of the cumulative % of the total
variance, so when i go from total solution of 8 (8 variables in the data
set), to a reduced number of
2004 Apr 14
1
prcomp - error code 18
I am attempting to perform a pca on a data frame of dimension 5000x19, but
when I execute
pcapres<-prcomp(pres,center=TRUE)
the following error message is returned:
Error in La.svd(x, nu, nv, method) : error code 18 from Lapack routine
dgesdd
Where am I going wrong? I am running R-1.8.0 on Debian.
Regards,
Laura
2008 Jan 04
1
PCA error: svd(x, nu=0) infinite or missing values
Hi,
I am trying to do a PCA on my data but I keep getting the error message
svd(x, nu=0) infinite or missing values
>From the messages posted on the subject, I understand that the NAs in my
data might be the problem, but I thought na.omit would take care of that.
Less than 5% of my cells are missing data. However, the NAs are not
regularly distributed across my matrix: certain cases and
2016 Mar 25
2
summary( prcomp(*, tol = .) ) -- and 'rank.'
> On 25 Mar 2016, at 10:41 am, peter dalgaard <pdalgd at gmail.com> wrote:
>
> As I see it, the display showing the first p << n PCs adding up to 100% of the variance is plainly wrong.
>
> I suspect it comes about via a mental short-circuit: If we try to control p using a tolerance, then that amounts to saying that the remaining PCs are effectively zero-variance, but
2004 Nov 03
2
Princomp(), prcomp() and loadings()
In comparing the results of princomp and prcomp I find:
1. The reported standard deviations are similar but about 1% from
each other, which seems well above round-off error.
2. princomp returns what I understand are variances and cumulative
variances accounted for by each principal component which are
all equal. "SS loadings" is always 1.
3. Same happens
2008 May 16
1
Dimensions of svd V matrix
Hi,
I'm trying to do PCA on a n by p wide matrix (n < p), and I'd like to
get more principal components than there are rows. However, svd() only
returns a V matrix of with n columns (instead of p) unless the argument
nv=p is set (prcomp calls svd without setting it). Moreover, the
eigenvalues returned are always min(n, p) instead of p, even if nv is set:
> x <-
2016 Mar 22
3
Memory usage in prcomp
Hi All:
I am running prcomp on a very large array, roughly [500000, 3650]. The array itself is 16GB. I am running on a Unix machine and am running ?top? at the same time and am quite surprised to see that the application memory usage is 76GB. I have the ?tol? set very high (.8) so that it should only pull out a few components. I am surprised at this memory usage because prcomp uses the SVD
2016 Mar 22
3
Memory usage in prcomp
Hi All:
I am running prcomp on a very large array, roughly [500000, 3650]. The array itself is 16GB. I am running on a Unix machine and am running ?top? at the same time and am quite surprised to see that the application memory usage is 76GB. I have the ?tol? set very high (.8) so that it should only pull out a few components. I am surprised at this memory usage because prcomp uses the SVD
2006 May 17
2
prcomp: problem with zeros? (PR#8870)
Full_Name: Juha Heljoranta
Version: R 2.1.1 (2005-06-20)
OS: Gentoo Linux
Submission from: (NULL) (88.112.29.250)
prcomp has a bug which causes following error
Error in svd(x, nu = 0) : infinite or missing values in 'x'
on a valid data set (no Infs, no missing values). The error is most likely
caused by the zeros in data.
My code and temporary workaround:
m = matrix(...
...
2007 Dec 26
2
Principal Components Analysis
Hi,
I do have a file that has 500000 columns and 40 rows. I want to apply PCA on
that data and this is what I did
h1<-read.table("Ccode.txt", sep='\t', header=F) # reads the data from the
file Ccode.txt
h2<-prcomp(na.omit(h1),center=T)
but I am getting the following error
"Error in svd(x, nu = 0) : 0 extent dimensions"
I appreciate if someone can help
2005 Aug 03
3
prcomp eigenvalues
Hello,
Can you get eigenvalues in addition to eigevectors using prcomp? If so how?
I am unable to use princomp due to small sample sizes.
Thank you in advance for your help!
Rebecca Young
--
Rebecca Young
Graduate Student
Ecology & Evolutionary Biology, Badyaev Lab
University of Arizona
1041 E Lowell
Tucson, AZ 85721-0088
Office: 425BSW
rlyoung at email.arizona.edu
(520) 621-4005
2006 Jun 16
2
bug in prcomp (PR#8994)
The following seems to be an bug in prcomp():
> test <- ts( matrix( c(NA, 2:5, NA, 7:10), 5, 2))
> test
Time Series:
Start = 1
End = 5
Frequency = 1
Series 1 Series 2
1 NA NA
2 2 7
3 3 8
4 4 9
5 5 10
> prcomp(test, scale.=TRUE, na.action=na.omit)
Erro en svd(x, nu = 0) : infinite or missing values in 'x'
2009 Mar 08
2
prcomp(X,center=F) ??
I do not understand, from a PCA point of view, the option center=F
of prcomp()
According to the help page, the calculation in prcomp() "is done by a
singular value decomposition of the (centered and possibly scaled) data
matrix, not by using eigen on the covariance matrix" (as it's done by
princomp()) .
"This is generally the preferred method for numerical accuracy"
2010 May 15
2
Attempt to customise the "plotpc()" function
Dear R-list,
Among the (R-)tools, I've seen on the net, for (bivariate) Principal Component
scatter plots (+histograms), "plotpc" [1] is the one I like most.
By default it performs PCA on a bivariate dataset based on R's "princomp()"
(which is the eigenvector-based algebraic solution to PCA). I would like to
modify "plotpc()" in order be able, as an
2009 Oct 19
2
What is the difference between prcomp and princomp?
Some webpage has described prcomp and princomp, but I am still not
quite sure what the major difference between them is. Can they be used
interchangeably?
In help, it says
'princomp' only handles so-called R-mode PCA, that is feature
extraction of variables. If a data matrix is supplied (possibly
via a formula) it is required that there are at least as many
units as
2006 Mar 25
1
Suggest patch for princomp.formula and prcomp.formula
Dear all,
perhaps I am using princomp.formula and prcomp.formula in a way that
is not documented to work, but then the documentation just says:
formula: a formula with no response variable.
Thus, to avoid a lot of typing, it would be nice if one could use '.'
and '-' in the formula, e.g.
> library(DAAG)
> res <- prcomp(~ . - case - site - Pop - sex, possum)
2009 Mar 10
1
Using napredict in prcomp
Hello all,
I wish to compute site scores using PCA (prcomp) on a matrix with
missing values, for example:
Drain Slope OrgL
a 4 1 NA
b 2.5 39 6
c 6 8 45
d 3 9 12
e 3 16 4
...
Where a,b... are sites.
The command
> pca<-prcomp(~ Drain + Slope + OrgL, data = t, center = TRUE, scale =
TRUE, na.action=na.exclude)
works great, and from
2006 Jun 26
1
princomp and prcomp confusion
When I look through archives at
https://stat.ethz.ch/pipermail/r-help/2003-October/040525.html
I see this:
Liaw, Andy wrote:
>In the `Detail' section of ?princomp:
>
>princomp only handles so-called Q-mode PCA, that is feature extraction of
>variables. If a data matrix is supplied (possibly via a formula) it is
>required that there are at least as many units as variables. For