similar to: PCA Using prcomp()

Displaying 20 results from an estimated 7000 matches similar to: "PCA Using prcomp()"

2004 Nov 03
2
Princomp(), prcomp() and loadings()
In comparing the results of princomp and prcomp I find: 1. The reported standard deviations are similar but about 1% from each other, which seems well above round-off error. 2. princomp returns what I understand are variances and cumulative variances accounted for by each principal component which are all equal. "SS loadings" is always 1. 3. Same happens
2010 Jun 30
3
Factor Loadings in Vegan's PCA
Hi all, I am using the vegan package to run a prcincipal components analysis on forest structural variables (tree density, basal area, average height, regeneration density) in R. However, I could not find out how to extract factor loadings (correlations of each variable with each pca axis), as is straightforwar in princomp. Do anyone know how to do that? Moreover, do anyone knows
2009 Feb 13
4
PCA functions
Hi All, would appreciate an answer on this if you have a moment; Is there a function (before I try and write it !) that allows the input of a covariance or correlation matrix to calculate PCA, rather than the actual data as in princomp() Regards Glenn [[alternative HTML version deleted]]
2008 Jan 18
2
plotting other axes for PCA
Hi R-community, I am doing a PCA and I need plots for different combinations of axes (e.g., PC1 vs PC3, and PC2 vs PC3) with the arrows indicating the loadings of each variables. What I need is exactly what I get using biplot (pca.object) but for other axes. I have plotted PC2 and 3 using the scores of the cases, but I don't get the arrows proportional to the loadings of each variables on
2004 Feb 17
1
Comparison of % variance explained by each PC before AND after rotation
Hello again- Thanks to Prof. Ripley for responding to my previous question. I would like to clarify my question using sample code. I will use some sample code taken from ?prcomp Again, I would like to compare the % variance explained by each PC before and after rotation. < code follows > data(USArrests) pca = prcomp(USArrests, scale = TRUE) # proportion variance explained by each
2004 Nov 09
1
PCA prcomp problem
I've just starting using the prcomp function, and I want to be able to extract individual principal components (e.g. PC1, PC2) in vector format. I haven't been able to find any documentation that explains how to do this (or even if it is possible). Any help on the subject would be greatly appreciated. Many thanks Deirdre Toher Teagasc National Food Centre
2009 Nov 25
1
which to trust...princomp() or prcomp() or neither?
According to R help: princomp() uses eigenvalues of covariance data. prcomp() uses the SVD method. yet when I run the (eg., USArrests) data example and compare with my own "hand-written" versions of PCA I get what looks like the opposite. Example: comparing the variances I see: Using prcomp(USArrests) ------------------------------------- Standard deviations: [1] 83.732400 14.212402
2009 Oct 19
2
What is the difference between prcomp and princomp?
Some webpage has described prcomp and princomp, but I am still not quite sure what the major difference between them is. Can they be used interchangeably? In help, it says 'princomp' only handles so-called R-mode PCA, that is feature extraction of variables. If a data matrix is supplied (possibly via a formula) it is required that there are at least as many units as
2012 May 23
1
prcomp with previously scaled data: predict with 'newdata' wrong
Hello folks, it may be regarded as a user error to scale() your data prior to prcomp() instead of using its 'scale.' argument. However, it is a user thing that may happen and sounds a legitimate thing to do, but in that case predict() with 'newdata' can give wrong results: x <- scale(USArrests) sol <- prcomp(x) all.equal(predict(sol), predict(sol, newdata=x)) ## [1]
2010 Nov 10
2
prcomp function
Hello, I have a short question about the prcomp function. First I cite the associated help page (help(prcomp)): "Value: ... SDEV the standard deviations of the principal components (i.e., the square roots of the eigenvalues of the covariance/correlation matrix, though the calculation is actually done with the singular values of the data matrix). ROTATION the matrix of variable loadings
2011 Sep 09
2
prcomp: results with reversed sign in output?
Dear All, when I'm running a PCA with prcomp(USArrests, scale = TRUE) I get the right principal components, but with the wrong sign infront Rotation: PC1 PC2 PC3 PC4 Murder 0.5358995 -0.4181809 0.3412327 0.64922780 Assault 0.5831836 -0.1879856 0.2681484 -0.74340748 UrbanPop 0.2781909 0.8728062 0.3780158 0.13387773 Rape 0.5434321 0.1673186 -0.8177779 0.08902432 instead of PC1 PC2 PC3 PC4
2006 Nov 16
1
Problems with principal components analysis PCA with prcomp
Dear friends, I am beginning to use R software in my academic research and I'm having some problems regarding the use of PCA. I have a table with 24445 rows and 9 columns, and I used the function prcomp() to do the analysis. Working with an example?: x<-read.table("test.txt", header=T) row.names(x)<-x[,1] x<-x[,-1] require(stats) pca<-prcomp(x, scale=T) names(pca) ##
2008 Nov 03
1
Input correlation matrix directly to princomp, prcomp
Hello fellow Rers, I have a no-doubt simple question which is turning into a headache so would be grateful for any help. I want to do a principal components analysis directly on a correlation matrix object rather than inputting the raw data (and specifying cor = TRUE or the like). The reason behind this is I need to use polychoric correlation coefficients calculated with John Fox's
2009 Dec 23
1
prcomp : plotting only explanatory axis arrows
Dear all, I have a very large dataset (1712351 , 20) and would like to plot only the arrows that represent the contribution of each variables. On the sample below I woild like to plot only the explanatory variables (Murder, Assault..) and not the sites. prcomp(USArrests) # inappropriate prcomp(USArrests, scale = TRUE) prcomp(~ Murder + Assault + Rape, data = USArrests, scale = TRUE)
2009 Mar 08
2
prcomp(X,center=F) ??
I do not understand, from a PCA point of view, the option center=F of prcomp() According to the help page, the calculation in prcomp() "is done by a singular value decomposition of the (centered and possibly scaled) data matrix, not by using eigen on the covariance matrix" (as it's done by princomp()) . "This is generally the preferred method for numerical accuracy"
2012 Oct 19
1
factor score from PCA
Hi everyone, I am trying to get the factor score for each individual case from a principal component analysis, as I understand, both princomp() and prcomp() can not produce this factor score, the principal() in psych package has this option: scores=T, but after running the code, I could not figure out how to show the factor score results. Here is my code, could anyone give me some advice please?
2005 Jul 08
2
extract prop. of. var in pca
Dear R-helpers, Using the package Lattice, I performed a PCA. For example pca.summary <- summary(pc.cr <- princomp(USArrests, cor = TRUE)) The Output of "pca.summary" looks as follows: Importance of components: Comp.1 Comp.2 Comp.3 Comp.4 Standard deviation 1.5748783 0.9948694 0.5971291 0.41644938 Proportion of Variance 0.6200604
2008 Jun 17
4
PCA analysis
Hi, I have a problem with making PCA plots that are readable. I would like to set different sympols instead of the numbers of my samples or their names, that I get plotted (xlabs). How is this possible? With points, i don“t seem to get the right data plotted onto the PCA plot, as I do not quite understand from where it is taken. I dont know how to plot the correct columns of the prcomp
2009 Jan 13
1
PCA loadings differ vastly!
hi, I have two questions: #first (SPSS vs. R): I just compared the output of different PCA routines in R (pca, prcomp, princomp) with results from SPSS. the loadings of the variables differ vastly! in SPSS the variables load constantly higher than in R. I made sure that both progr. use the correlation matrix as basis. I found the same problem with rotated values (varimax rotation and rtex=T
2011 Jul 29
1
Limited number of principal components in PCA
Hi all, I am attempting to run PCA on a matrix (nrow=66, ncol=84) using 'prcomp' (stats package). My data (referred to as 'Q' in the code below) are separate river streamflow gaging stations (columns) and peak instantaneous discharge (rows). I am attempting to use PCA to identify regions of that vary together. I am entering the following command: