similar to: eigen and svd

Displaying 20 results from an estimated 2000 matches similar to: "eigen and svd"

2003 Jul 03
2
SVD and spectral decompositions of a hermitian matrix
Hi: I create a hermitian matrix and then perform its singular value decomposition. But when I put it back, I don't get the original hermitian matrix. I am having the same problem with spectral value decomposition as well. I am using R 1.7.0 on Windows. Here is my code: X <- matrix(rnorm(16)+1i*rnorm(16),4) X <- X + t(X) X[upper.tri(X)] <- Conj(X[upper.tri(X)]) Y <-
2013 Jun 18
1
eigen(symmetric=TRUE) for complex matrices
R-3.0.1 rev 62743, binary downloaded from CRAN just now; macosx 10.8.3 Hello, eigen(symmetric=TRUE) behaves strangely when given complex matrices. The following two lines define 'A', a 100x100 (real) symmetric matrix which theoretical considerations [Bochner's theorem] show to be positive definite: jj <- matrix(0,100,100) A <- exp(-0.1*(row(jj)-col(jj))^2) A's being
2012 May 02
2
interactive loop
Dear R-helpers, I have a number of point configurations representing skull shapes, but some of them contain superfluous points. I want to write a loop in which each configuration is plotted and I am asked to write the numbers of points that are superfluous. However, I don't know how to introduce this interactive element. Would you give me an advice? Best regards Ond?ej Mikula -- Ond?ej
2001 Sep 06
1
svd and eigen
Hello List, i need help for eigen and svd functions. I have a non-symmetric square matrix. These matrix is not positive (some eigenvalues are negative). I want to diagonalise these matrix. So, I use svd and eigen and i compare the results. eigen give me the "good" eigenvalues (positive and negative). I compare with another software and the results are the same. BUT, when i use svd,
2000 May 10
4
Q: Problems with eigen() vs. svd()
At 01:37 PM 5/10/00 +0200, ralle wrote: >Hi, >I have a problem understanding what is going on with eigen() for >nonsymmetric matrices. >Example: >h<-rnorm(6) >> dim(h)<-c(2,3) >> c<-rnorm(6) "c" is not a great choice of identifier! >> dim(c)<-c(3,2) >> Pi<-h %*% c >> eigen(Pi)$values >[1] 1.56216542 0.07147773 These could
2011 May 04
1
natural cubic splines
Dear R-helpers, I need to fit natural cubic spline with specified number of knots. I expected 'splines' package will be helpful, but I am confused by its help. Is more detailed documentation available for it or could you recommend another R function? Best regards Ondrej Mikula
2002 Apr 01
3
svd, La.svd (PR#1427)
(I tried to send this earlier, but it doesnt seem to have come through, due to problems on my system) Hola: Both cannot be correct: > m <- matrix(1:4, 2) > svd(m) $d [1] 5.4649857 0.3659662 $u [,1] [,2] [1,] -0.5760484 -0.8174156 [2,] -0.8174156 0.5760484 $v [,1] [,2] [1,] -0.4045536 0.9145143 [2,] -0.9145143 -0.4045536 > La.svd(m) $d [1]
2008 May 16
1
Dimensions of svd V matrix
Hi, I'm trying to do PCA on a n by p wide matrix (n < p), and I'd like to get more principal components than there are rows. However, svd() only returns a V matrix of with n columns (instead of p) unless the argument nv=p is set (prcomp calls svd without setting it). Moreover, the eigenvalues returned are always min(n, p) instead of p, even if nv is set: > x <-
2000 Aug 10
1
svd error (PR#631)
--=====================_24736660==_ Content-Type: text/plain; charset="iso-8859-1"; format=flowed Content-Transfer-Encoding: quoted-printable SVD-Error on R 1.1.0 Windows 98 I get the following error applying svd on a positive definite matrix : > sk2 [,1] [,2] [,3] [,4] [,5] [1,] 1.0460139783 0.084356992 -2.810553e-04
2007 Nov 29
1
?eigen documentation suggestion
from ?eigen symmetric: if 'TRUE', the matrix is assumed to be symmetric (or Hermitian if complex) and only its lower triangle is used. If 'symmetric' is not specified, the matrix is inspected for symmetry. I think that could mislead a naive reader as it suggests that, with symmetric=TRUE, the result of eigen() (vectors and values) depends only on
2008 Apr 15
1
SVD of a variance matrix
Hello! I suppose this is more a matrix theory question than a question on R, but I will give it a try... I am using La.svd to compute the singular value decomposition (SVD) of a variance matrix, i.e., a symmetric nonnegative definite square matrix. Let S be my variance matrix, and S = U D V' be its SVD. In my numerical experiments I always got U = V. Is this necessarily the case? Or I might
2013 Apr 08
3
SVD on very large data matrix
Dear All, I need to perform a SVD on a very large data matrix, of dimension ~ 500,000 x 1,000 , and I am looking for an efficient algorithm that can perform an approximate (partial) SVD to extract on the order of the top 50 right and left singular vectors. Would be very grateful for any advice on what R-packages are available to perform such a task, what the RAM requirement is, and indeed what
2005 Jan 27
2
svd error
Hi, I met a probem recently and need your help. I would really appreciate it. I kept receiving the following error message when running a program: 'Error in svd(X) : infinite or missing values in x'. However, I did not use any svd function in this program though I did include the function pseudoinverse. Is the problem caused by doing pseudoinverse? Best regards, Tongtong
2010 Jan 16
2
La.svd of a symmetric matrix
Dear R list users, the singluar value decomposition of a symmetric matrix M is UDV^(T), where U = V. La.svd(M) gives as output three elements: the diagonal of D and the two orthogonal matrices u and vt (which is already the transpose of v). I noticed that the transpose of vt is not exactly u. Why is that? thank you for your attention and your help Stefano AVVISO IMPORTANTE: Questo messaggio di
2001 Nov 02
1
Look, Watson! La.svd & ATLAS
Dear R-devel, I had attempted to compile r-devel (dated Oct. 31, 2001) on WinNT with link to ATLAS, with mostly success. However, when I tried the following, I got a visit from Dr. Watson: R : Copyright 2001, The R Development Core Team Version 1.4.0 Under development (unstable) (2001-10-31) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under
2011 Sep 13
1
SVD Memory Issue
I am trying to perform Singular Value Decomposition (SVD) on a Term Document Matrix I created using the 'tm' package. Eventually I want to do a Latent Semantic Analysis (LSA). There are 5677 documents with 771 terms (the DTM is 771 x 5677). When I try to do the SVD, it runs out of memory. I am using a 12GB Dual core Machine with Windows XP and don't think I can increase the memory
2002 Dec 03
2
missing values and svd
Dear All, Is it possible to manage a svd analysis within a matrix containing NA values. If not how do I could overcome this problem. Thanks in advance Antonio
2002 Nov 17
1
SVD for reducing dimensions
-----BEGIN PGP SIGNED MESSAGE----- Hash: SHA1 Hi all, this is probably simple and I'm just doing something stupid, sorry about that :-) I'm trying to convert words (strings of letters) into a fairly small dimensional space (say 10, but anything between about 5 and 50 would be ok), which I will call a feature vector. The the distance between two words represents the similarity of the
2004 Jul 27
4
SVD with positivity constraints
Hello, I have a matrix equation, Ax=b, that I need to solve for x. x should be a vector of positive numbers (between 0 and 1). A is not a square matrix in general. This lead me to using the SVD. However, using the SVD gives me positive and negative numbers, as well. I have some constraints included in the A matrix itself (i.e., that the sum of some xi should be equal to 1) but I do not know how
2003 Feb 06
6
Confused by SVD and Eigenvector Decomposition in PCA
Hey, All In principal component analysis (PCA), we want to know how many percentage the first principal component explain the total variances among the data. Assume the data matrix X is zero-meaned, and I used the following procedures: C = covriance(X) %% calculate the covariance matrix; [EVector,EValues]=eig(C) %% L = diag(EValues) %%L is a column vector with eigenvalues as the elements percent