similar to: metafor package: effect sizes are not fully independent

Displaying 20 results from an estimated 800 matches similar to: "metafor package: effect sizes are not fully independent"

2006 Nov 21
3
Fitting mixed-effects models with lme with fixed error term variances
Dear R users, I am writing to you because I have a few question on how to fix the error term variances in lme in the hope that you could help me. To my knowledge, the closest possibility is to fix the var-cov structure, but not the whole var-cov matrix. I found an old thread (a few years ago) about this, and it seems that the only alternative is to write the likelihood down and use optim or a
2003 Oct 23
1
Variance-covariance matrix for beta hat and b hat from lme
Dear all, Given a LME model (following the notation of Pinheiro and Bates 2000) y_i = X_i*beta + Z_i*b_i + e_i, is it possible to extract the variance-covariance matrix for the estimated beta_i hat and b_i hat from the lme fitted object? The reason for needing this is because I want to have interval prediction on the predicted values (at level = 0:1). The "predict.lme" seems to
2004 Apr 18
2
lm with data=(means,sds,ns)
Hi Folks, I am dealing with data which have been presented as at each x_i, mean m_i of the y-values at x_i, sd s_i of the y-values at x_i number n_i of the y-values at x_i and I want to linearly regress y on x. There does not seem to be an option to 'lm' which can deal with such data directly, though the regression problem could be algebraically
2008 Jul 31
1
clustering and data-mining...
Hi all, I am doing some experiment studies... It seems to me that with different combination of 5 parameters, the end results ultimately converged to two scalars. That's to say, some combinations of the 5 parameters lead to one end result and some other combinations of the 5 parameters lead to the other end result (scalar). I am thinking of this is sort of something like clustering or
2001 Oct 09
1
PROC MIXED user trying to use (n)lme...
Dear R-users Coming from a proc mixed (SAS) background I am trying to get into the use of (n)lme. In this connection, I have some (presumably stupid) questions which I am sure someone out there can answer: 1) With proc mixed it is easy to get a hold on the estimated variance parameters as they can be put out into a SAS data set. How do I do the same with lme-objects? For example, I can see the
2011 Aug 26
2
How to generate a random variate that is correlated with a given right-censored random variate?
Hi, I have a right-censored (positive) random variable (e.g. failure times subject to right censoring) that is observed for N subjects: Y_i, I = 1, 2, ..., N. Note that Y_i = min(T_i, C_i), where T_i is the true failure time and C_i is the censored time. Let us assume that C_i is independent of T_i. Now, I would like to generate another random variable U_i, I = 1, 2, ..., N, which is
2000 Aug 10
2
"remote announce": system broadcast addresses can't differ still?
We have 4 class C networks, 199.129.206.* 199.129.207.* 199.129.208.* 199.129.209.* I see IP addresses from all 4 classes thru tcpdump. Some of these computers broadcast as C-class computers; eg, to 199.129.206.255 Some broadcast to 255.255.255.255 Of course, several C class networks would induce me to use a B-class broadcast, 199.129.255.255 This works for the computers I
2012 Aug 22
1
(Slight) calculation discrepancy in escalc (metafor package)
Hello, I recently started using the metafor package (version 1.6-0) in R (2.15.1, 64-bit Windows 7) and noticed that I was getting slightly different values when I manually calculated the standardized mean difference versus what escalc was giving me. Here''s a very simple example: escalc(measure="SMD", m1i=5,m2i=10,n1i=5,n2i=5,sd1i=1,sd2i=2,vtype="LS") The result
2011 Jun 07
2
gam() (in mgcv) with multiple interactions
Hi! I'm learning mgcv, and reading Simon Wood's book on GAMs, as recommended to me earlier by some folks on this list. I've run into a question to which I can't find the answer in his book, so I'm hoping somebody here knows. My outcome variable is binary, so I'm doing a binomial fit with gam(). I have five independent variables, all continuous, all uniformly
2004 Apr 05
3
2 lme questions
Greetings, 1) Is there a nice way of extracting the variance estimates from an lme fit? They don't seem to be part of the lme object. 2) In a series of simulations, I am finding that with ML fitting one of my random effect variances is sometimes being estimated as essentially zero with massive CI instead of the finite value it should have, whilst using REML I get the expected value. I guess
2013 Apr 22
3
Scatterplot and Causality
Dear All, I hope this is not too off topic. I am given a set of scatteplots (nothing too fancy; think about a normal x-y 2D plot). I do not deal with two time series (indeed I have no info about time). If I call A=(A1,A2,...) and B=(B1, B2, ...) the 2 variables (two vectors of numbers most of the case, but sometimes they can be categorical variables), I can plot one against the other and I
2006 Aug 10
1
How to fit bivaraite longitudinal mixed model ?
Hi Is there any way to fit a bivaraite longitudinal mixed model using R. I have a data set with col names resp1 (Y_ij1), resp2 (Y_ij2), timepts (t_ij), unit(i) j=1,2,..,m and i=1,2,..n. I want to fit the following two models Model 1 Y_ij1, Y_ij2 | U_i = u_i ~ N(alpha + u_i + beta1*t_ij, Sigma) U_i ~ iid N(0, sigu^2) Sigma = bivariate AR structure alpha and beta are vectors of order 2.
2005 Jun 04
1
can R do Fixed-effects (within) regression (panel data)?
i want to ask 2 questions. 1) can R do Random-effects GLS regression which i can get from Stata? the following result is frome Stata.can I get the alike result from R? xtreg lwage educ black hisp exper expersq married union, re Random-effects GLS regression Number of obs = 4360 Group variable (i) : nr Number of groups = 545 R-sq:
2006 May 20
1
(PR#8877) predict.lm does not have a weights argument for newdata
Dear R developers, I am a little disappointed that my bug report only made it to the wishlist, with the argument: Well, it does not say it has. Only relevant to prediction intervals. predict.lm does calculate prediction intervals for linear models from weighted regression, so they should be correct, right? As far as I can see they are bound to be wrong in almost all cases, if no weights
2002 Mar 29
1
help with lme function
Hi all, I have some difficulties with the lme function and so this is my problem. Supoose i have the following model y_(ijk)=beta_j + e_i + epsilon_(ijk) where beta_j are fixed effects, e_i is a random effect and epsilon_(ijk) is the error. If i want to estimate a such model, i execute >lme(y~vec.J , random~1 |vec .I ) where y is the vector of my data, vec.J is a factor object
2011 Jul 19
1
notation question
Dear list, I am currently writing up some of my R models in a more formal sense for a paper, and I am having trouble with the notation. Although this isn't really an 'R' question, it should help me to understand a bit better what I am actually doing when fitting my models! Using the analysis of co-variance example from MASS (fourth edition, p 142), what is the correct notation for the
2003 Mar 29
1
Goodness of fit tests
I have a dataset which I want to model using a Poisson distribution, with a given parameter. I would like to know what is the proper way to do a ''goodness of fit'' test using R. I know the steps I''d take if I were to do it ''manually'': grouping the numbers into classes, calculating the expected frequencies using ''ppois'', then
2011 Nov 22
1
Generate Simulation
Hallo everybody, I'm new in r and I"ll appreciate some help! I have a matrix of nrow=30 and ncoll=54,and I would like to generate 50 simulations with tha same size of the matrix!!!That is to say that I want to generate 50 matrices -for my 50 simulations - with the same dimensions! I took my 1st matrix according to the formula that I want to implement: D<-mean_m + U_i*mat_DELTA
2010 Jun 09
1
equivalent of stata command in R
Dear all, I need to use R for one estimation, and i have readily available stata command, but i need also the R version of the same command. the estimation in stata is as following: 1. Compute mean values of relevant variables . sum inno lnE lnM Variable | Obs Mean Std. Dev. Min Max -------------+--------------------------------------------------------
2006 Feb 10
1
Lmer with weights
Hello! I would like to use lmer() to fit data, which are some estimates and their standard errors i.e kind of a "meta" analysis. I wonder if weights argument is the right one to use to include uncertainty (standard errors) of "data" into the model. I would like to use lmer(), since I would like to have a "freedom" in modeling, if this is at all possible. For