similar to: Problems while plotting with ROCR

Displaying 20 results from an estimated 2000 matches similar to: "Problems while plotting with ROCR"

2006 Nov 24
1
How to find AUC in SVM (kernlab package)
Dear all, I was wondering if someone can help me. I am learning SVM for classification in my research with kernlab package. I want to know about classification performance using Area Under Curve (AUC). I know ROCR package can do this job but I found all example in ROCR package have include prediction, for example, ROCR.hiv {ROCR}. My problem is how to produce prediction in SVM and to find
2009 Sep 23
0
ROCR.plot methods, cross validation averaging
Dear R-help and ROCR developers (Tobias Sing and Oliver Sander) - I think my first question is generic and could apply to many methods, which is why I'm directing this initially to R-help as well as Tobias and Oliver. Question 1. The plot function in ROCR will average your cross validation data if asked. I'd like to use that averaged data to find a "best" cutoff but I
2009 Feb 25
3
Using package ROCR
I am trying to use package ROCR to analyze classification accuracy, unfortunately there are some problems right at the beginning. Question 1) When I try to run demo I am getting the following error message > library(ROCR) > demo(ROCR) > if(dev.cur() <= 1) .... [TRUNCATED] Error in get(getOption("device")) : wrong first argument When I issue the command > dev.cur() it
2009 May 12
1
ROCR: auc and logarithm plot
Hi, I am quite new to R and I have two questions regarding ROCR. 1. I have tried to understand how to extract area-under-curve value by looking at the ROCR document and googling. Still I am not sure if I am doing the right thing. Here is my code, is "auc1" the auc value? " pred1 <- prediction(resp1,label1) perf1 <- performance(pred1,"tpr","fpr") plot(
2009 Jul 25
4
ROCR package question
I use ROCR to plot multiple runs' performance. Using the sample code as example: # plot ROC curves for several cross-validation runs (dotted # in grey), overlaid by the vertical average curve and boxplots # showing the vertical spread around the average. data(ROCR.xval) pred <- prediction(ROCR.xval$predictions, ROCR.xval$labels) perf <- performance(pred,"tpr","fpr")
2009 Nov 25
0
ROCR Issue: Averaging Across Multiple Classifier Runs in ROC Curve
Dear R-philes, I am having some trouble averaging across multiple runs of a classifier in an ROC Curve. I am using the ROCR package and the plot() method. First, I initialize a list with two elements where each element is a list of predictions and labels: vowel.ROC <- list(predictions=list(), labels=list()) For every run of the classifier, I append the scores and labels to their
2010 Jan 22
2
Computing Confidence Intervals for AUC in ROCR Package
Dear R-philes, I am plotting ROC curves for several cross-validation runs of a classifier (using the function below). In addition to the average AUC, I am interested in obtaining a confidence interval for the average AUC. Is there a straightforward way to do this via the ROCR package? plot_roc_curve <- function(roc.dat, plt.title) { #print(str(vowel.ROC)) pred <-
2009 Sep 24
3
pipe data from plot(). was: ROCR.plot methods, cross validation averaging
All, I'm trying again with a slightly more generic version of my first question. I can extract the plotted values from hist(), boxplot(), and even plot.randomForest(). Observe: # get some data dat <- rnorm(100) # grab histogram data hdat <- hist(dat) hdat #provides details of the hist output #grab boxplot data bdat <- boxplot(dat) bdat #provides details of the boxplot
2007 Jan 31
0
ROCR 1.0-2
Dear useRs, an update of the ROCR package is available on CRAN. ROCR helps in evaluating the performance of scoring classifiers using ROC graphs, precision/recall plots, lift charts and many other performance metrics. For further information check http://rocr.bioinf.mpi-sb.mpg.de and http://bioinformatics.oxfordjournals.org/cgi/reprint/21/20/3940 NEWS: - added an optional parameter
2007 Jan 31
0
ROCR 1.0-2
Dear useRs, an update of the ROCR package is available on CRAN. ROCR helps in evaluating the performance of scoring classifiers using ROC graphs, precision/recall plots, lift charts and many other performance metrics. For further information check http://rocr.bioinf.mpi-sb.mpg.de and http://bioinformatics.oxfordjournals.org/cgi/reprint/21/20/3940 NEWS: - added an optional parameter
2011 Apr 27
2
ROCR for combination of markers
Dear list   I have 5 markers that can be used to detect an infection in combination. Could you please advise me how to use functions in ROCR/ other package to produce the ROC curve for a combination of markers?   I have used the following to get ROC statistics for each marker. pred <- prediction(y$marker1, y$infectn) perf <-performance(pred,"tpr","fpr")
2013 May 27
1
Question about subsetting S4 object in ROCR
Dear list I'm testing a predictor and I produced nice performance plots with ROCR package utilizing the 3 standard command pred <- prediction(predictions, labels) perf <- performance(pred, measure = "tpr", x.measure = "fpr") plot(perf, col=rainbow(10)) The pred object and the perfo object are S4 with the following slots An object of class "performance"
2009 Mar 27
1
ROCR package finding maximum accuracy and optimal cutoff point
If we use the ROCR package to find the accuracy of a classifier pred <- prediction(svm.pred, testset[,2]) perf.acc <- performance(pred,"acc") Do we?find the maximum accuracy?as follows?(is there a simplier way?): > max(perf.acc at x.values[[1]]) Then to find the cutoff point that maximizes the accuracy?do we do the following?(is there a simpler way): > cutoff.list <-
2014 Jun 23
2
Resumen de R-help-es, Vol 64, Envío 33
Hola, Marta, Por lo que he podido ver tus datos ya tienen calculados las tasas de verdaderos y falsos positivos (TPR y FPR). También parece que los tienes ordenados por la variable FishSpeed y supongo que también por las que parecen marcas de tiempo. No necesitas ROCR porque con un simple plot te sale algo parecido a una curva. Eso sí, veo que son medidas repetidas en el tiempo para cada valor de
2009 Nov 29
2
kernlab's ksvm method freeze
Hello, I am using kernlab to do some binary classification on aminoacid strings. I am using a custom kernel, so i use the kernel="matrix" option of the ksvm method. My (normalized) kernel matrix is of size 1309*1309, my results vector has the same length. I am using C-svc. My kernlab call is something similiar to this: ksvm(kernel="matrix", kernelMatrix, trainingDataYs,
2014 Jun 20
2
Como construir una curva ROC
Hola! Tengo que hacer una curva ROC com unos datos que obtuve de hacer una macro de excel y aplicar unas reglas, y basicamente tengo que a partir de la variacion del tiempo y la velocidad del barco obtengo diferentes porcentajes de true positives (TP) y false positives (FP) y con eso deberia de construir una curva ROC. Dada mi ignorância en este tema, no se muy bien por donde empezar , estuve
2011 Jun 01
1
Function to save plots
Hello, I'm using ROCR to plot ROC Curves and I want to automate the saving of plots into PNG files using a custom function. My data frames are named like test1, test2, test3. Each data frame has three variables: method1, method2, goldstandard. Right now, for each plot I have to run: png('test1_method1.png') plot(performance(prediction(test1$method1, test1$goldstandard),
2014 Jun 27
2
error:max not meaningful for factors
Hola a todos, Estoy intentando utilizar este script para hacer un plot con valores x ,y,z; representando los valores TP(y) y FP(x) y en funcion de la velocidad que seria el factor alpha. Y me da este en el ultimo punto de hacer el plot, alguien sabe que significa? library(ROCR) data(ROCR.simple) pred <- prediction( ROCR.simple$predictions, ROCR.simple$labels ) perf <- performance( pred,
2009 Mar 19
1
Prediction-class ROCR
Hi, I'm involved in a bioinformatics project at my university, and we're doing a comparison paper between some methods of classification of nc-RNA. I've been encharged of ploting the ROC curves' graphs. But I'm new on working with R and I'm having some difficulty with the prediction-class. I don't get where the values of ROCR.simple$predictions, for example, came from
2012 Feb 09
2
ROCR crashes for simple recall plot
I'm trying to use ROCR to create a simple cutoff vs recall plot (recall at p) on the example ROCR.simple dataset: library(ROCR) data(ROCR.simple) pred <- prediction(ROCR.simple$predictions, ROCR.simple$labels) perf <- performance(pred, "rec") plot(perf) But R crashes on me on the last line. I'm using R 2.14.1, ROCR 1.0-4. ?Any ideas? Thanks in advance. -- Yang Zhang