similar to: Regarding SVM using R

Displaying 20 results from an estimated 300 matches similar to: "Regarding SVM using R"

2009 Nov 29
2
kernlab's ksvm method freeze
Hello, I am using kernlab to do some binary classification on aminoacid strings. I am using a custom kernel, so i use the kernel="matrix" option of the ksvm method. My (normalized) kernel matrix is of size 1309*1309, my results vector has the same length. I am using C-svc. My kernlab call is something similiar to this: ksvm(kernel="matrix", kernelMatrix, trainingDataYs,
2009 Oct 23
1
Data format for KSVM
Hi, I have a process using svm from the e1071 library. it works. I want to try using the KSVM library instead. The same data used wiht e1071 gives me an error with KSVM. My data is a data.frame. sample code: svm_formula <- formula(y ~ a + B + C) svm_model <- ksvm(formula, data=train_data, type="C-svc", kernel="rbfdot", C=1) I get the following error:
2012 May 05
2
Pasting with Quotes
Hello useRs! So, I have a random question. I'm trying to build a character string, then evaluate it. I think an example would be the easiest way to explain: kern.vec = c("rbfdot","polydot") for( j in 1:length( kern.vec ) ) { formula = paste("ksvm( ind ~ . , data=d.temp[,c(ind_col,dep_cols)], kernel =",kern.vec[j],", prob.model=T
2012 Feb 13
2
kernlab - error message: array(0, c(n, p)) : 'dim' specifies too large an array
Hi, For another trainingset I get this error message, which again is rather cryptic to me: Setting default kernel parameters Error in array(0, c(n, p)) : 'dim' specifies too large an array RMate stopped at line 0 of selection Calls: rvm ... .local -> backsolve -> as.matrix -> chol -> diag -> array thanks for any suggestions!
2009 Apr 28
1
kernlab - custom kernel
hi, I am using R's "kernlab" package, exactly i am doing classification using ksvm(.) and predict.ksvm(.).I want use of custom kernel. I am getting some error. # Following R code works (with promotergene dataset): library("kernlab") s <- function(x, y) { sum((x*y)^1.25) } class(s) <- "kernel" data("promotergene") gene <- ksvm(Class ~ .,
2010 Mar 16
2
Missing index in vector assignment
Dear r-helpers, I am getting a mismatch error between two variables: svp <- ksvm(x, y, type="nu-svc") Error in .local(x, ...) : x and y don't match. and I suspect that it might be due to missing index in the y variable which I defined as: y <- (LVvar[,1]) I tried various methods to make the y assignment in the same format as x, which is a dataframe x <-
2008 Jun 25
1
stringdot
Hi!! I am trying to figure out how to use the string kernel "stringdot" in kernlab. k <- function(x,y) { (sum(x*y) +1)*exp(-0.001*sum((x-y)^2)) } class(k) <- "kernel" data(promotergene) ## train svm using custom kernel gene.k <- ksvm(Class~.,data=promotergene,kernel=k,C=10,cross=5) # works fine in this case gene.rbf <-
2011 Aug 26
1
kernlab: ksvm() bug?
Hello all, I'm trying to run a gird parameter search for a svm. Therefore I'M using the ksvm function from the kernlab package. ---- svp <- ksvm(Ktrain,ytrain,type="nu-svc",nu=C) ---- The problem is that the optimization algorithm does not return for certain parameters. I tried to use setTimeLimit() but that doesn't seem to help. I suspect that ksvm() calls c code that
2009 Jul 08
1
ksvm question -- help! line search failed...
I got the data working, but now I got another problem with KSVM: line search fails -2.793708 -0.5831701 1.870406e-05 -5.728611e-06 -5.059796e-08 -3.761822e-08 -7.308871e-13Error in prob.model(object)[[p]]$A : $ operator is invalid for atomic vectors On Tue, Jul 7, 2009 at 6:45 PM, Steve Lianoglou<mailinglist.honeypot at gmail.com> wrote: > Hi, > > On Jul 7, 2009, at 6:44 PM,
2009 Dec 15
2
read dataset in R language.
Hi, Could you please help me in solving the following error message: Error in `[.data.frame`(mytestdata, fp_temp == 1) : undefined columns selected when I use scan instead on read.table, I reicieve this message: Error in names(ret2) <- rowns : 'names' attribute [172] must be the same length as the vector [152] Many thanks, Nancy
2006 Jan 29
2
SoS! How to predict new values using linear regression models?
Hi all, After trial and error by myself for a few hours, I decide to ask for your help. I have a training set which is a matrix of size 200 x 2, where the two columns denote each independent variable. I have 200 observations. ----------------- ss=data.frame(trainingSet); result=lm(trainingClass~ss$X1+ss$X2); ----------------- where trainingClass denotes the true classes of the training data.
2012 Aug 19
1
kernlab | ksvm error
Dear list, I am using the ksvm function from kernlab as follows: (1) learning > svm.pol4 <- ksvm(class.labs ~ ., data = train.data, prob.model = T, scale = T, kernel = "polydot") (2) prediction > svm.pol.prd4 <- predict(svm.pol4, train.data, type = "probabilities")[,2] But unfortunately, when calling the prediction, once in every 10s of times (using the exact
2011 Jan 24
5
Train error:: subscript out of bonds
Hi, I am trying to construct a svmpoly model using the "caret" package (please see code below). Using the same data, without changing any setting, I am just changing the seed value. Sometimes it constructs the model successfully, and sometimes I get an ?Error in indexes[[j]] : subscript out of bounds?. For example when I set seed to 357 following code produced result only for 8
2013 Nov 15
1
Inconsistent results between caret+kernlab versions
I'm using caret to assess classifier performance (and it's great!). However, I've found that my results differ between R2.* and R3.* - reported accuracies are reduced dramatically. I suspect that a code change to kernlab ksvm may be responsible (see version 5.16-24 here: http://cran.r-project.org/web/packages/caret/news.html). I get very different results between caret_5.15-61 +
2012 Nov 15
1
Can't see what i did wrong..
with pred.pca<-predict(splits[[i]]$pca,trainingData at samples)[,1:nPCs] dframe<-as.data.frame(cbind(pred.pca,class=isExplosive(trainingData,2))); results[[i]]$classifier<-ksvm(class~.,data=dframe,scaled=T,kernel="polydot",type="C-svc", C=C,kpar=list(degree=degree,scale=scale,offset=offset),prob.model=T) and a degree of 5 i get an error of 0 reported by the ksvm
2009 Dec 25
2
Help with SVM package Kernlab
Hi useR's, I am resending this request since I got no response for my last post and I am new to the list so pardon me if I am violating the protocol. I am trying to use the "Kernlab" package for training and prediction using SVM's. I am getting the following error when I am trying to use the predict function: > predictSvm = predict(modelforSVM, testSeq); Error in
2006 Nov 24
1
How to find AUC in SVM (kernlab package)
Dear all, I was wondering if someone can help me. I am learning SVM for classification in my research with kernlab package. I want to know about classification performance using Area Under Curve (AUC). I know ROCR package can do this job but I found all example in ROCR package have include prediction, for example, ROCR.hiv {ROCR}. My problem is how to produce prediction in SVM and to find
2009 Oct 04
3
error installing/compiling kernlab
Hi everybody, I''m using R on a 64-bit Ubuntu 9.04 (Jaunty). I prefer to install R packages from source, even if they are available in Synaptic. The problem is that I can''t install/compile kernlab. Everything works fine until it gets to the lazy loading part: ** preparing package for lazy loading Creating a new generic function for "terms" in "kernlab"
2009 Jul 07
1
ksvm question -- help! cannot get program to run...
What's wrong? Very sad about this... model <- ksvm(x=mytraindata[, -1], y=factor(mytraindata[, 1]), prob.model=T) Error in .local(x, ...) : x and y don't match.
2010 Jun 11
1
Decision values from KSVM
Hi, I'm working on a project using the kernlab library. For one phase, I want the "decision values" from the SVM prediction, not the class label. the e1071 library has this function, but I can't find the equivalent in ksvm. In general, when an SVM is used for classification, the label of an unknown test-case is decided by the "sign" of its resulting value as