Displaying 20 results from an estimated 10000 matches similar to: "predict.glm and predict.gam output"
2007 Oct 05
2
question about predict.gam
I'm fitting a Poisson gam model, say
model<-gam(a65tm~as.factor(day.week
)+as.factor(week)+offset(log(pop65))+s(time,k=10,bs="cr",fx=FALSE,by=NA,m=1),sp=c(
0.001),data=dati1,family=poisson)
Currently I've difficulties in obtaining right predictions by using
gam.predict function with MGCV package in R version 2.2.1 (see below my
syntax).
2008 Jun 11
1
mgcv::gam error message for predict.gam
Sometimes, for specific models, I get this error from predict.gam in library
mgcv:
Error in complete.cases(object) : negative length vectors are not allowed
Here's an example:
model.calibrate <-
gam(meansalesw ~ s(tscore,bs="cs",k=4),
data=toplot,
weights=weight,
gam.method="perf.magic")
> test <- predict(model.calibrate,newdata)
Error in
2011 Mar 28
2
mgcv gam predict problem
Hello
I'm using function gam from package mgcv to fit splines. ?When I try
to make a prediction slightly beyond the original 'x' range, I get
this error:
> A = runif(50,1,149)
> B = sqrt(A) + rnorm(50)
> range(A)
[1] 3.289136 145.342961
>
>
> fit1 = gam(B ~ s(A, bs="ps"), outer.ok=TRUE)
> predict(fit1, newdata=data.frame(A=149.9), outer.ok=TRUE)
Error
2006 Nov 15
1
can I get standard error from predict.gam()?
Hi everybody,
I am using predict.gam() now. I but it seems there is no such option to get
standard errors of the predicted values. I tried to set se=T or se.fit=T but
no use.
If you know anything about that please let me know. Thanks very much.
Kevin.
[[alternative HTML version deleted]]
2012 Feb 17
1
Standard errors from predict.gam versus predict.lm
I've got a small problem.
I have some observational data (environmental samples: abiotic explanatory variable and biological response) to which I've fitted both a multiple linear regression model and also a gam (mgcv) using smooths for each term. The gam clearly fits far better than the lm model based on AIC (difference in AIC ~ 8), in addition the adjusted R squared for the gam is
2013 Jul 08
1
error in "predict.gam" used with "bam"
Hello everyone.
I am doing a logistic gam (package mgcv) on a pretty large dataframe
(130.000 cases with 100 variables).
Because of that, the gam is fitted on a random subset of 10000. Now when I
want to predict the values for the rest of the data, I get the following
error:
> gam.basis_alleakti.1.pr=predict(gam.basis_alleakti.1,
+
2008 Apr 09
1
mgcv::predict.gam lpmatrix for prediction outside of R
This is in regards to the suggested use of type="lpmatrix" in the
documentation for mgcv::predict.gam. Could one not get the same result more
simply by using type="terms" and interpolating each term directly? What is
the advantage of the lpmatrix approach for prediction outside R? Thanks.
--
View this message in context:
2011 Apr 19
1
Prediction interval with GAM?
Hello,
Is it possible to estimate prediction interval using GAM? I looked through
?gam, ?predict.gam etc and the mgcv.pdf Simon Wood. I found it can
calculate confidence interval but not clear if I can get it to calculate
prediction interval. I read "Inference for GAMs is difficult and somewhat
contentious." in Kuhnert and Venable An Introduction to R, and wondering why
and if that
2004 Oct 26
3
GLM model vs. GAM model
I have a question about how to compare a GLM with a GAM model using anova
function.
A GLM is performed for example:
model1 <-glm(formula = exitus ~ age+gender+diabetes, family = "binomial",
na.action = na.exclude)
A second nested model could be:
model2 <-glm(formula = exitus ~ age+gender, family = "binomial", na.action =
na.exclude)
To compare these two GLM
2007 Jun 22
1
two basic question regarding model selection in GAM
Qusetion #1
*********
Model selection in GAM can be done by using:
1. step.gam {gam} : A directional stepwise search
2. gam {mgcv} : Smoothness estimation using GCV or UBRE/AIC criterion
Suppose my model starts with a additive model (linear part + spline part).
Using gam() {mgcv} i got estimated degrees of freedom(edf) for the smoothing
splines. Now I want to use the functional form of my model
2011 Dec 09
3
gam, what is the function(s)
Hello,
I'd like to understand 'what' is predicting the response for library(mgcv)
gam?
For example:
library(mgcv)
fit <- gam(y~s(x),data=as.data.frame(l_yx),family=binomial)
xx <- seq(min(l_yx[,2]),max(l_yx[,2]),len=101)
plot(xx,predict(fit,data.frame(x=xx),type="response"),type="l")
I want to see the generalized function(s) used to predict the response
2004 Dec 01
2
step.gam
Dear R-users:
Im trying (using gam package) to develop a stepwise analysis. My gam
object contains five pedictor variables (a,b,c,d,e,f). I define the
step.gam:
step.gam(gamobject, scope=list("a"= ~s(a,4), "b"= ~s(b,4), "c"= ~s(c,4),
"d"= ~s(d,4), "e"= ~s(e,4), "f"= ~s(f,4)))
However, the result shows a formula containing the whole
2011 Jan 18
1
Circular variables within a GLM, GLM-GEE or GAM
Hi,
I have a variable (current speed direction) which is circular (0=360 degrees), and I'd like my GLM to include the variable as a circular variable. Can I do this? And what is the code?
I'm actually doing a GLM-GEE using the 'geepack' package, so want to use it in that, but also interested in whether it can also be used in GLMs and GAMs (I use the 'mgcv' package for
2007 Dec 13
1
Two repeated warnings when runing gam(mgcv) to analyze my dataset?
Dear all,
I run the GAMs (generalized additive models) in gam(mgcv) using the
following codes.
m.gam
<-gam(mark~s(x)+s(y)+s(lstday2004)+s(ndvi2004)+s(slope)+s(elevation)+disbinary,family=binomial(logit),data=point)
And two repeated warnings appeared.
Warnings$B!'(B
1: In gam.fit(G, family = G$family, control = control, gamma = gamma, ... :
Algorithm did not converge
2: In gam.fit(G,
2005 Oct 05
3
testing non-linear component in mgcv:gam
Hi,
I need further help with my GAMs. Most models I test are very
obviously non-linear. Yet, to be on the safe side, I report the
significance of the smooth (default output of mgcv's summary.gam) and
confirm it deviates significantly from linearity.
I do the latter by fitting a second model where the same predictor is
entered without the s(), and then use anova.gam to compare the
2003 Jun 03
3
gam questions
Dear all,
I'm a fairly new R user having two questions regarding gam:
1. The prediction example on p. 38 in the mgcv manual. In order to get
predictions based on the original data set, by leaving out the 'newdata'
argument ("newd" in the example), I get an error message
"Warning message: the condition has length > 1 and only the first element
will be used in: if
2007 Aug 08
1
prediction using gam
I am fitting a two dimensional smoother in gam, say junk =
gam(y~s(x1,x2)), to a response variable y that is always positive and
pretty well behaved, both x1 and x2 are contained within [0,1].
I then create a new dataset for prediction with values of (x1,x2) within
the range of the original data.
predict(junk,newdata,type="response")
My predicted values are a bit strange
2008 May 06
1
mgcv::gam shrinkage of smooths
In Dr. Wood's book on GAM, he suggests in section 4.1.6 that it might be
useful to shrink a single smooth by adding S=S+epsilon*I to the penalty
matrix S. The context was the need to be able to shrink the term to zero if
appropriate. I'd like to do this in order to shrink the coefficients towards
zero (irrespective of the penalty for "wiggliness") - but not necessarily
all the
2008 Jan 08
3
GAM, GLM, Logit, infinite or missing values in 'x'
Hi,
I'm running gam (mgcv version 1.3-29) and glm (logit) (stats R 2.61) on
the same models/data, and I got error messages for the gam() model and
warnings for the glm() model.
R-help suggested that the glm() warning messages are due to the model
perfectly predicting binary output. Perhaps the model overfits the data? I
inspected my data and it was not immediately obvious to me (though I
2003 Jun 04
2
gam()
Dear all,
I've now spent a couple of days trying to learn R and, in particular, the
gam() function, and I now have a few questions and reflections regarding
the latter. Maybe these things are implemented in some way that I'm not yet
aware of or have perhaps been decided by the R community to not be what's
wanted. Of course, my lack of complete theoretical understanding of what