Displaying 20 results from an estimated 700 matches similar to: "bigglm "update" with ff"
2007 Jun 29
1
Comparison: glm() vs. bigglm()
Hi,
Until now, I thought that the results of glm() and bigglm() would
coincide. Probably a naive assumption?
Anyways, I've been using bigglm() on some datasets I have available.
One of the sets has >15M observations.
I have 3 continuous predictors (A, B, C) and a binary outcome (Y).
And tried the following:
m1 <- bigglm(Y~A+B+C, family=binomial(), data=dataset1, chunksize=10e6)
2009 Jul 03
2
bigglm() results different from glm()
Hi Sir,
Thanks for making package available to us. I am facing few problems if
you can give some hints:
Problem-1:
The model summary and residual deviance matched (in the mail below) but
I didn't understand why AIC is still different.
> AIC(m1)
[1] 532965
> AIC(m1big_longer)
[1] 101442.9
Problem-2:
chunksize argument is there in bigglm but not in biglm, consequently,
2012 May 31
2
bigglm binomial negative fitted value
Hi, there
Since glm cannot handle factors very well. I try to use bigglm like this:
logit_model <- bigglm(responser~var1+var2+var3, data, chunksize=1000,
family=binomial(), weights=~trial, sandwich=FALSE)
fitted <- predict(logit_model, data)
only var2 is factor, var1 and var3 are numeric.
I expect fitted should be a vector of value falls in (0,1)
However, I get something like this:
2010 Mar 02
1
bigglm Memory Issues
Hi all,
I'm somewhat of a novice in terms of programming, so I thought I'd come here to seek some help with an issue I'm having.
I'm trying to model a glm using bigglm, but in spite of my best efforts, I cannot get it to work!
Here is the particular line of code that is giving me trouble:
>mod = bigglm(Pres/wt ~ Xdes, data=dat, family=poisson(), weights = ~wt, maxit=100,
2009 Mar 17
2
bigglm() results different from glm()
Dear all,
I am using the bigglm package to fit a few GLM's to a large dataset (3
million rows, 6 columns). While trying to fit a Poisson GLM I noticed
that the coefficient estimates were very different from what I obtained
when estimating the model on a smaller dataset using glm(), I wrote a
very basic toy example to compare the results of bigglm() against a
glm() call. Consider the
2010 Jul 02
2
unable to get bigglm working, ATTN: Thomas Lumley
I am using an example posted in this help forum to work with a file. the head
of the file looks like:
988887 2007-03-05 2007-06-01 90 3 5.450 205500.00 999.00 999.000 0.000 0 0
988887 2007-03-06 2007-06-01 90 3 5.450 205500.00 999.00 999.000 0.000 1 0
988887 2007-03-07 2007-06-01 90 3 5.450 205500.00 999.00 999.000 -0.100 2 0
988887 2007-03-08 2007-06-01 90 3 5.450 205500.00 999.00 999.000 -0.100
2007 Jan 22
1
Example function for bigglm (biglm) data input from file
This is to submit a commented example function for use in the data
argument to the bigglm(biglm) function, when you want to read the data
from a file (instead of a URL), or rescale or modify the data before
fitting the model. In the hope that this may be of help to someone out
there.
make.data <- function (filename, chunksize, ...) {
conn<-NULL;
function (reset=FALSE) {
if
2011 Feb 08
1
Fitting a model with an offset in bigglm
Dear all,
I have a large data set and would like to fit a logistic regression
model using the bigglm function. I need to include an offset in the
model but when I do this the bigglm function seems to ignore it.
For example, running the two models below produces the same model and
the offset is ignored
bigglm(y~x,offset=z,data=Test,family=binomial(link = "logit"))
2011 Jan 10
1
debug biglm response error on bigglm model
G'morning
What does the error message "Error in x %*% coef(object) : non-
conformable arguments" indicate when calculating the response values
for
newdata with a model from bigglm (in package biglm), and how can I
debug it? I am attempting to do Monte Carlo simulations, which may
explain the loop in the code that follows. After the code I
have included the output, which shows that
2009 Mar 17
1
exporting s3 and s4 methods
If a package defined an S3 generic and an S4 generic for the same function (so as to add methods for S4 classes to the existing code), how do I set up the namespace to have them exported?
With
import(stats)
exportMethods(bigglm)
importClassesFrom(DBI)
useDynLib(biglm)
export(biglm)
export(bigglm)
in NAMESPACE, the S3 generic is not exported.
> methods("bigglm")
[1] bigglm.RODBC*
2013 Mar 05
1
memory leak in 3.3.1 rebalance?
I started rebalancing my 25x2 distributed-replicate volume two days ago.
Since then, the memory usage of the rebalance processes has been
steadily climbing by 1-2 megabytes per minute. Following
http://gluster.org/community/documentation/index.php/High_Memory_Usage,
I tried "echo 2 > /proc/sys/vm/drop_caches". This had no effect on the
processes' memory usage. Some of the
2010 Jan 07
1
A question about the ff package
Hi,
I am using version 2.1-1 of the ff package.
I have a data set with 80 million rows and I need to create a new ffdf
object, subseting by values in one of the original ffdf's columns. Here is
my code:
bigData <- read.table.ffdf(file="/data/demodata/data/smallData.txt",
next.rows=1e5, head=TRUE, sep="|")
dim(bigData)
N <- nrow(bigData);N
select <- ff(
2012 Nov 30
2
"layout is NULL", "Failed to get node-uuid for [...] and other errors during rebalancing in 3.3.1
I started rebalancing my volume after updating from 3.2.7 to 3.3.1.
After a few hours, I noticed a large number of failures in the rebalance
status:
> Node Rebalanced-files size scanned failures
> status
> --------- ----------- ----------- ----------- -----------
> ------------
> localhost 0 0Bytes 4288805
2012 May 13
1
R package dependency issues when namespace is not attached
I have always assumed that having a package in the 'Depends' field
would automatically also?import?the namespace. However, it seems that
in R 2.15, dependencies do not become available until the package is
actually?attached?to the searchpath. Is this intended behavior?
The problem appears as follows: Suppose there is a package 'Child'
which?Depends, but does not explicitly
2016 Dec 31
2
Java para bigdata
Si,
Bueno en realidad, estamos en un curso de bigdata y estan haciendo mucha scosas con Java, pero yo intento pasarlo a Python tood, ya uqe me parece un lenguaje mucho mas simple y más parecido a R
Y si, lo que quiero principalmente es aplicar machine learning sobre conjuntos de datos enormes.
Alguna recomendación?
________________________________
De: Carlos Ortega <cof en
2015 Jun 15
2
Regresión logística
Hola,
estoy intentando hacer una regresión logística entre la primera columna de
mi data.table (In.hospital_death) y otras dos (GSV y BUN) , me da el error
de abajo, he intentado eliminar las filas con valor NA por si esta función
no lo admite, pero sigue dando el mismo error. ¿Alguien sabe porqué ocurre?
(probé previamente a usar la función glm pero obtenía out of memory)
library(XLConnect)
2016 Dec 30
2
Java para bigdata
Aunque es un poco offtopic, creeis necesario aprender java para temas de bigdata o con python es suficiente
Gracias
Jesús
[[alternative HTML version deleted]]
2013 Feb 05
1
funcion ff
Hola R, tengo las siguientes preguntas:
Pregunta 1:
Cargar las tablas de los datos de peliculas en R usando `ff`.
Cómo se construye una columna nueva que de, para cada cliente y cada
evaluación,
de el número de días que han pasado desde la primera evaluación del cliente?
Qué función se utiliza para verifica el consumo de memoria en las
operaciones?
Pregunta 2:
Cómo se corre un modelo de
2017 Sep 16
1
Help with shiny::reactiveFileReader()
Hello,
Is it possible to execute functions (outside the ui and server shiny
environments) after reading data using reactiveFileReader() ?
For example, I'd like to fit a linear model on data read using
reactiveFileReader() outside ui/server.
library(shiny)
library(dplyr)
bigData <- reactiveFileReader(1000, NULL, 'data.csv', read.csv)
fit <- lm(y ~., data = bigData())
ui
2015 Jun 16
2
Regresión logística
Gracias!
El 15 de junio de 2015, 16:54, Freddy Omar López Quintero <
freddy.vate01 en gmail.com> escribió:
> ?Holap.?
>
> ran out of iterations and failed to converge
>
>
> ?Prueba aumentando el número de iteraciones, con el argumento maxit:
>
> ?GLM <- bigglm(In.hospital_death ~ GCS + BUN, data = DatosGLM, family =
>> binomial(logit), maxit=1000)?
>