similar to: linear functional relationships with heteroscedastic & non-Gaussian errors - any packages around?

Displaying 20 results from an estimated 1000 matches similar to: "linear functional relationships with heteroscedastic & non-Gaussian errors - any packages around?"

2010 Feb 06
1
Canberra distance
Hi the list, According to what I know, the Canberra distance between X et Y is : sum[ (|x_i - y_i|) / (|x_i|+|y_i|) ] (with | | denoting the function 'absolute value') In the source code of the canberra distance in the file distance.c, we find : sum = fabs(x[i1] + x[i2]); diff = fabs(x[i1] - x[i2]); dev = diff/sum; which correspond to the formula : sum[ (|x_i - y_i|) /
2018 Jan 17
1
mgcv::gam is it possible to have a 'simple' product of 1-d smooths?
I am trying to test out several mgcv::gam models in a scalar-on-function regression analysis. The following is the 'hierarchy' of models I would like to test: (1) Y_i = a + integral[ X_i(t)*Beta(t) dt ] (2) Y_i = a + integral[ F{X_i(t)}*Beta(t) dt ] (3) Y_i = a + integral[ F{X_i(t),t} dt ] equivalents for discrete data might be: 1) Y_i = a + sum_t[ L_t * X_it * Beta_t ] (2) Y_i
2001 Mar 05
1
Canberra dist and double zeros
Canberra distance is defined in function `dist' (standard library `mva') as sum(|x_i - y_i| / |x_i + y_i|) Obviously this is undefined for cases where both x_i and y_i are zeros. Since double zeros are common in many data sets, this is a nuisance. In our field (from which the distance is coming), it is customary to remove double zeros: contribution to distance is zero when both x_i
2001 Mar 05
1
Canberra dist and double zeros
Canberra distance is defined in function `dist' (standard library `mva') as sum(|x_i - y_i| / |x_i + y_i|) Obviously this is undefined for cases where both x_i and y_i are zeros. Since double zeros are common in many data sets, this is a nuisance. In our field (from which the distance is coming), it is customary to remove double zeros: contribution to distance is zero when both x_i
2004 Apr 18
2
lm with data=(means,sds,ns)
Hi Folks, I am dealing with data which have been presented as at each x_i, mean m_i of the y-values at x_i, sd s_i of the y-values at x_i number n_i of the y-values at x_i and I want to linearly regress y on x. There does not seem to be an option to 'lm' which can deal with such data directly, though the regression problem could be algebraically
2010 Apr 25
1
function pointer question
Hello, I have the following function that receives a "function pointer" formal parameter name "fnc": loocv <- function(data, fnc) { n <- length(data.x) score <- 0 for (i in 1:n) { x_i <- data.x[-i] y_i <- data.y[-i] yhat <- fnc(x=x_i,y=y_i) score <- score + (y_i - yhat)^2 } score <- score/n
2007 Mar 01
1
covariance question which has nothing to do with R
This is a covariance calculation question so nothing to do with R but maybe someone could help me anyway. Suppose, I have two random variables X and Y whose means are both known to be zero and I want to get an estimate of their covariance. I have n sample pairs (X1,Y1) (X2,Y2) . . . . . (Xn,Yn) , so that the covariance estimate is clearly 1/n *(sum from i = 1 to n of ( X_i*Y_i) ) But,
2018 Mar 15
0
stats 'dist' euclidean distance calculation
> 3x3 subset used > Locus1 Locus2 Locus3 > Samp1 GG <NA> GG > Samp2 AG CA GA > Samp3 AG CA GG > > The euclidean distance function is defined as: sqrt(sum((x_i - y_i)^2)) My > assumption was that the difference between
2007 Feb 01
3
Help with efficient double sum of max (X_i, Y_i) (X & Y vectors)
Greetings. For R gurus this may be a no brainer, but I could not find pointers to efficient computation of this beast in past help files. Background - I wish to implement a Cramer-von Mises type test statistic which involves double sums of max(X_i,Y_j) where X and Y are vectors of differing length. I am currently using ifelse pointwise in a vector, but have a nagging suspicion that there is a
2010 Feb 05
3
metafor package: effect sizes are not fully independent
In a classical meta analysis model y_i = X_i * beta_i + e_i, data {y_i} are assumed to be independent effect sizes. However, I'm encountering the following two scenarios: (1) Each source has multiple effect sizes, thus {y_i} are not fully independent with each other. (2) Each source has multiple effect sizes, each of the effect size from a source can be categorized as one of a factor levels
2005 Jun 15
2
need help on computing double summation
Dear helpers in this forum, This is a clarified version of my previous questions in this forum. I really need your generous help on this issue. > Suppose I have the following data set: > > id x y > 023 1 2 > 023 2 5 > 023 4 6 > 023 5 7 > 412 2 5 > 412 3 4 > 412 4 6 > 412 7 9 > 220 5 7 > 220 4 8 > 220 9 8 > ...... > Now I want to compute the
2003 Oct 23
1
Variance-covariance matrix for beta hat and b hat from lme
Dear all, Given a LME model (following the notation of Pinheiro and Bates 2000) y_i = X_i*beta + Z_i*b_i + e_i, is it possible to extract the variance-covariance matrix for the estimated beta_i hat and b_i hat from the lme fitted object? The reason for needing this is because I want to have interval prediction on the predicted values (at level = 0:1). The "predict.lme" seems to
2018 Mar 15
3
stats 'dist' euclidean distance calculation
Hello, I am working with a matrix of multilocus genotypes for ~180 individual snail samples, with substantial missing data. I am trying to calculate the pairwise genetic distance between individuals using the stats package 'dist' function, using euclidean distance. I took a subset of this dataset (3 samples x 3 loci) to test how euclidean distance is calculated: 3x3 subset used
2004 Dec 15
2
how to fit a weighted logistic regression?
I tried lrm in library(Design) but there is always some error message. Is this function really doing the weighted logistic regression as maximizing the following likelihood: \sum w_i*(y_i*\beta*x_i-log(1+exp(\beta*x_i))) Does anybody know a better way to fit this kind of model in R? FYI: one example of getting error message is like: > x=runif(10,0,3) > y=c(rep(0,5),rep(1,5)) >
2011 Jul 19
1
notation question
Dear list, I am currently writing up some of my R models in a more formal sense for a paper, and I am having trouble with the notation. Although this isn't really an 'R' question, it should help me to understand a bit better what I am actually doing when fitting my models! Using the analysis of co-variance example from MASS (fourth edition, p 142), what is the correct notation for the
2017 Dec 03
1
Discourage the weights= option of lm with summarized data
Peter, This is a highly structured text. Just for the discussion, I separate the building blocks, where (D) and (E) and (F) are new: BEGIN OF TEXT -------------------- (A) Non-?NULL? ?weights? can be used to indicate that different observations have different variances (with the values in ?weights? being inversely proportional to the variances); (B) or equivalently, when the elements of
2005 Jul 07
1
CDF plot
Dear all, I have define a discrete distribution P(y_i=x_i)=p_i, which I want to plot a CDF plot. However, I can not find a function in R to draw it for me after searching R and R-archive. I only find the one for the sample CDF instead my theoretical one. I find stepfun can do it for me, however, I want to plot some different CDF with same support x in one plot. I can not manage how to do it with
2013 Mar 02
1
Errors-In-Variables in R
In reference to [1], how would you solve the following regression problem: Given observations (X_i,Y_i) with known respective error distributions (e_X_i,e_Y_i) (say, 0-mean Gaussian with known STD), find the parameters a and b which maximize the Likelihood of Y = a*X + b Taking the example further, how many of the very simplified assumptions from the above example can be lifted or eased and R
2006 May 24
1
(PR#8877) predict.lm does not have a weights argument for
I am more than 'a little disappointed' that you expect a detailed explanation of the problems with your 'bug' report, especially as you did not provide any explanation yourself as to your reasoning (nor did you provide any credentials nor references). Note that 1) Your report did not make clear that this was only relevant to prediction intervals, which are not commonly used.
2007 May 21
1
Sample correlation coefficient question NOT R question
This is a statistics question not an R question. When calculating the sample correlation coefficient cor(x_t,y_t) between say two variables, x_t and y_t t=1,.....n ( one can assume that the variables are in time but I don't think this really matters for the question ), does someone know where I can find any piece of literature that says that each (x_j,y_j) pair has To be independent from the