similar to: Interpretation in cor()

Displaying 20 results from an estimated 4000 matches similar to: "Interpretation in cor()"

2008 Oct 10
1
Correlation among correlation matrices cor() - Interpretation
Hello, If I have two correlation matrices (e.g. one for each of two treatments) and then perform cor() on those two correlation matrices is this third correlation matrix interpreted as the correlation between the two treatments? In my sample below I would interpret that the treatments are 0.28 correlated. Is this correct? > var1<- c(.000000000008, .09, .1234, .5670008, .00110011002200,
2009 May 18
2
Overdispersion using repeated measures lmer
Dear All I am trying to do a repeated measures analysis using lmer and have a number of issues. I have non-orthogonal, unbalanced data. Count data was obtained over 10 months for three treatments, which were arranged into 6 blocks. Treatment is not nested in Block but crossed, as I originally designed an orthogonal, balanced experiment but subsequently lost a treatment from 2 blocks. My
2010 Oct 28
1
xyplot and panel.curve
Hi All I have regression coefficients from an experiment and I want to plot them in lattice using panel curve but I have run into error messages. I want an 3 panel conditioned plot of 2 curves of Treatment 2 in each panel conditioned by Treatment1, the example curve expression is x+value*x^2 A rough toy example to give an idea of what I want is: Data: data = expand.grid(Treatment1 =
2002 Sep 11
0
Contrasts with interactions
Dear All, I'm not sure of the interpretation of interactions with contrasts. Can anyone help? I do an ANCOVA, dryweight is covariate, block and treatment are factors, c4 the response variable. model<-aov(log(c4+1)~dryweight+treatment+block+treatment:block) summary(model); Df Sum Sq Mean Sq F value Pr(>F) dryweight 1 3.947 3.947 6.6268 0.01076 *
2008 Feb 03
1
Effect size of comparison of two levels of a factor in multiple linear regression
Dear R users, I have a linear model of the kind outcome ~ treatment + covariate where 'treatment' is a factor with three levels ("0", "1", and "2"), and the covariate is continuous. Treatments "1" and "2" both have regression coefficients significantly different from 0 when using treatment contrasts with treatment "0" as the
2005 Oct 26
1
Post Hoc Groupings
Quick question, as I attempt to learn R. For post-hoc tests 1) Is there an easy function that will take, say the results of tukeyHSD and create a grouping table. e.g., if I have treatments 1, 2, and 3, with 1 and 2 being statistically the same and 3 being different from both Group Treatment A 1 A 2 B 3 2) I've been stumbling over the proper syntax for simple effects for a tukeyHSD
2008 Sep 17
1
ANOVA contrast matrix vs. TukeyHSD?
Dear Help List, Thanks in advance for reading...I hope my questions are not too ignorant. I have an experiment looking at evolution of wing size [centroid] in fruitflies and the effect of 6 different experimental treatments [treatment]. I have five replicate populations [replic] in each treatment and have reared the flies in two different temperatures [cond] to assay the wing size, making
2010 May 18
1
proportion of treatment effect by a surrogate (fitting multivariate survival model)
Dear R-help, I would like to compute the variance for the proportion of treatment effect by a surrogate in a survival model (Lin, Fleming, and De Gruttola 1997 in Statistics in Medicine). The paper mentioned that the covariance matrix matches that of the covariance matrix estimator for the marginal hazard modelling of multiple events data (Wei, Lin, and Weissfeld 1989 JASA), and is implemented
2006 May 09
2
post hoc comparison in repeated measure
Hi, I have a simple dataset with repeated measures. one factor is treatment with 3 levels (treatment1, treatment2 and control), the other factor is time (15 time points). Each treatment group has 10 subjects with each followed up at each time points, the response variable is numeric, serum protein amount. So the between subject factor is treatment, and the within subject factor is time. I ran a
2005 May 23
0
using lme in csimtest
Hi group, I'm trying to do a Tukey test to compare the means of a factor ("treatment") with three levels in an lme model that also contains the factors "site" and "time": model = response ~ treatment * (site + time) When I enter this model in csimtest, it takes all but the main factor "treatment" as covariables, not as factors (see below). Is it
2005 Sep 07
1
FW: Re: Doubt about nested aov output
Ronaldo, Further to my previous posting on your Glycogen nested aov model. Having read Douglas Bates' response and Reflected on his lmer analysis output of your aov nested model example as given.The Glycogen treatment has to be a Fixed Effect.If a 'treatment' isn't a Fixed Effect what is ? If Douglas Bates' lmer model is modified to treat Glycogen Treatment as a purely
2000 May 09
4
Dispersion in summary.glm() with binomial & poisson link
Following p.206 of "Statistical Models in S", I wish to change the code for summary.glm() so that it estimates the dispersion for binomial & poisson models when the parameter dispersion is set to zero. The following changes [insertion of ||dispersion==0 at one point; and !is.null(dispersion) at another] will do the trick: "summary.glm" <- function(object, dispersion =
2009 Aug 19
3
Sweave output from print.summary.glm is too wide
Hi all I am preparing a document using Sweave; a really useful tool. But I am having a problem. Consider this toy example Sweave file: \documentclass{article} \begin{document} <<echo=TRUE,results=verbatim>>= options(width=40) # Set width to 40 characters hide <- capture.output(example(glm)) # Create an example of the problem, but hide the output summary(glm.D93) #
2006 Sep 05
1
help: advice on the structuring of ReML models for analysing growth curves
Hi R experts, I am interested on the effects of two dietry compunds on the growth of chicks. Rather than extracting linear growth functions for each chick and using these in an analysis I thought using ReML might provide a neater and better way of doing this. (I have read the pdf vignette("MlmSoftRev") and "Fitting linear mixed models in R" by Douglas Bates but I am not
2008 Apr 04
1
lme4: How to specify nested factors, meaning of : and %in%
Hello list, I'm trying to figure out how exactly the specification of nested random effects works in the lmer function of lme4. To give a concrete example, consider the rat-liver dataset from the R book (rats.txt from: http://www.bio.ic.ac.uk/research/mjcraw/therbook/data/ ). Crawley suggests to analyze this data in the following way: library(lme4) attach(rats) Treatment <-
2013 Feb 13
2
NA/NaN/Inf in foreign function call (arg 6) error from coxph function
Dear R-helpers: I am trying to fit a multivariate Cox proportional hazards model, modelling survival outcome as a function of treatment and receptor status. The data look like below: # structure of the data str(sample.data) List of 4 $ survobj : Surv [1:129, 1:2] 0.8925+ 1.8836+ 2.1191+ 5.3744+ 1.6099+ 5.2567 0.2081+ 0.2108+ 0.2683+ 0.4873+ ... ..- attr(*, "dimnames")=List of 2
2011 Feb 08
1
Error in example Glm rms package
Hi all! I've got this error while running example(Glm) library("rms") > example(Glm) Glm> ## Dobson (1990) Page 93: Randomized Controlled Trial : Glm> counts <- c(18,17,15,20,10,20,25,13,12) Glm> outcome <- gl(3,1,9) Glm> treatment <- gl(3,3) Glm> f <- glm(counts ~ outcome + treatment, family=poisson()) Glm> f Call: glm(formula = counts ~
2006 Jan 29
1
extracting 'Z' value from a glm result
Hello R users I like to extract z values for x1 and x2. I know how to extract coefficents using model$coef but I don't know how to extract z values for each of independent variable. I looked around using names(model) but I couldn't find how to extract z values. Any help would be appreciated. Thanks TM ######################################################### >summary(model) Call:
2009 Nov 07
1
lme4 and incomplete block design
Dear list members, I try to simulate an incomplete block design in which every participants receives 3 out of 4 possible treatment. The outcome in binary. Assigning a binary outcome to the BIB or PBIB dataset of the package SASmixed gives the appropriate output. With the code below, fixed treatment estimates are not given for each of the 4 possible treatments, instead a kind of summary
2009 Jan 20
1
Poisson GLM
This is a basics beginner question. I attempted fitting a a Poisson GLM to data that is non-integer ( I believe Poisson is suitable in this case, because it is modelling counts of infections, but the data collected are all non-negative numbers with 2 decimal places). My question is, since R doesn't return an error with this glm fitting, is it important that the data is non-integer. How does