similar to: randomForest, 'No forest component...' error while calling Predict()

Displaying 20 results from an estimated 400 matches similar to: "randomForest, 'No forest component...' error while calling Predict()"

2012 Oct 22
1
random forest
Hi all, Can some one tell me the difference between the following two formulas? 1. epiG.rf <-randomForest(gamma~.,data=data, na.action = na.fail,ntree = 300,xtest = NULL, ytest = NULL,replace = T, proximity =F) 2.epiG.rf <-randomForest(gamma~.,data=data, na.action = na.fail,ntree = 300,xtest = NULL, ytest = NULL,replace = T, proximity =F) [[alternative HTML version deleted]]
2004 Jan 20
1
random forest question
Hi, here are three results of random forest (version 4.0-1). The results seem to be more or less the same which is strange because I changed the classwt. I hoped that for example classwt=c(0.45,0.1,0.45) would result in fewer cases classified as class 2. Did I understand something wrong? Christian x1rf <- randomForest(x=as.data.frame(mfilters[cvtrain,]),
2012 Mar 08
2
Regarding randomForest regression
Sir, This query is related to randomForest regression using R. I have a dataset called qsar.arff which I use as my training set and then I run the following function - rf=randomForest(x=train,y=trainy,xtest=train,ytest=trainy,ntree=500) where train is a matrix of predictors without the column to be predicted(the target column), trainy is the target column.I feed the same data
2004 Apr 15
7
all(logical(0)) and any(logical(0))
Dear R-help, I was bitten by the behavior of all() when given logical(0): It is TRUE! (And any(logical(0)) is FALSE.) Wouldn't it be better to return logical(0) in both cases? The problem surfaced because some un-named individual called randomForest(x, y, xtest, ytest,...), and gave y as a two-level factor, but ytest as just numeric vector. I thought I check for that in my code by testing
2009 Dec 10
2
different randomForest performance for same data
Hello, I came across a problem when building a randomForest model. Maybe someone can help me. I have a training- and a testdataset with a discrete response and ten predictors (numeric and factor variables). The two datasets are similar in terms of number of predictor, name of variables and datatype of variables (factor, numeric) except that only one predictor has got 20 levels in the training
2009 Apr 04
1
error in trmesh (alphahull package)
Hello R community, I have cross-posted with r-sig-geo as this issue could fall under either interest group I believe. I just came accross the alphahull package and am very pleased I may not need to use CGAL anymore for this purpose. However, I am having a problem computing alpha shapes with my point data, and it seems to have to do with the spatial configuration of my points (which form
2012 Dec 03
2
Different results from random.Forest with test option and using predict function
Hello R Gurus, I am perplexed by the different results I obtained when I ran code like this: set.seed(100) test1<-randomForest(BinaryY~., data=Xvars, trees=51, mtry=5, seed=200) predict(test1, newdata=cbind(NewBinaryY, NewXs), type="response") and this code: set.seed(100) test2<-randomForest(BinaryY~., data=Xvars, trees=51, mtry=5, seed=200, xtest=NewXs, ytest=NewBinarY) The
2005 Oct 11
1
a problem in random forest
Hi, there: I spent some time on this but I think I really cannot figure it out, maybe I missed something here: my data looks like this: > dim(trn3) [1] 7361 209 > dim(val3) [1] 7427 209 > mg.rf2<-randomForest(x=trn3[,1:208], y=trn3[,209], data=trn3, xtest=val3[, 1:208], ytest=val3[,209], importance=T) my test data has 7427 observations but after prediction, > dim(mg.rf2$votes)
2009 Sep 15
1
Boost in R
Hello, does any one know how to interpret this output in R? > Classification with logitboost > fit <- logitboost(xlearn, ylearn, xtest, presel=50, mfinal=20) > summarize(fit, ytest) Minimal mcr: 0 achieved after 6 boosting step(s) Fixed mcr: 0 achieved after 20 boosting step(s) What is "mcr" mean? Thanks [[alternative HTML version deleted]]
2010 May 05
1
What is the default nPerm for regression in randomForest?
Could not find it in ?randomForest. Thank you for your help! -- Dimitri Liakhovitski Ninah.com Dimitri.Liakhovitski at ninah.com
2006 Jul 26
3
memory problems when combining randomForests
Dear all, I am trying to train a randomForest using all my control data (12,000 cases, ~ 20 explanatory variables, 2 classes). Because of memory constraints, I have split my data into 7 subsets and trained a randomForest for each, hoping that using combine() afterwards would solve the memory issue. Unfortunately, combine() still runs out of memory. Is there anything else I can do? (I am not using
2002 Oct 04
1
items in Rd file
Dear R-devel, I'm encountering a strange problem in a Rd file that I'm working on. In the "Value" section, I have something like: ===================== \value{ An object of class \code{randomForest}, which is a list with the following components: \item{call}{the original call to \code{randomForest}} ... For classification problem, the following are also included:
2006 Jul 24
2
RandomForest vs. bayes & svm classification performance
Hi This is a question regarding classification performance using different methods. So far I've tried NaiveBayes (klaR package), svm (e1071) package and randomForest (randomForest). What has puzzled me is that randomForest seems to perform far better (32% classification error) than svm and NaiveBayes, which have similar classification errors (45%, 48% respectively). A similar difference in
2012 Nov 30
1
Baffled with as.matrix
I'm puzzled by as.matrix. It appears to work differently for Surv objects. Here is a session from my computer: tmt% R --vanilla > library(survival) Loading required package: splines > ytest <- Surv(1:3, c(1,0,1)) > is.matrix(ytest) >[1] TRUE > attr(ytest, 'type') [1] "right" > attr(as.matrix(ytest), 'type') [1] "right" >
2008 Apr 26
2
Calling a stored model within the predict() function
Hi all, First of all, I'm a novice R user (less that a week), so perhaps my code isn't very efficient. Using the MBoost package I created a model using the following command and saved it to a file for later use: model <- gamboost(fpfm,data=SampleClusterData,baselearner="bbs") # Creating a model save(model,file="model.RData") # Saving a model After this, during a
2005 Nov 25
3
obtaining a ROC curve
Hello, I have a classification tree. I want to obtain a ROC curve for this test. What is the easiest way to obtain one? -Anjali --------------------------------- [[alternative HTML version deleted]]
2003 Nov 25
2
RandomForest & memory demand
Hi, is it correct that i need ~ 2GB RAM that it's possible to work with the default setting ntree=500 and a data.frame with 100.000 rows and max. 10 columns for training and testing? P.S. It's possible calculate approximate the memory demand for different settings with RF? Many thanks & regards, Christian
2004 Oct 14
0
random forest problem when calculating variable importance
Hi - When using the randomForest function for regression, I get different results for mean-squared error of the predictions depending on whether or not I specify to calculate variable importance. There is an example below. I looked briefly at the source code, but couldn't find anything that would indicate why calculating variable importance would (or should) change predictions. I'm
2004 Oct 14
0
random forest problem when calculating variable importanc e
Are the results dramatically different? The result would be expected to be somewhat different, as setting importance=TRUE would make many calls to the random number generator (for permuting OOB data in each variable), making all but the first tree in the forest different than if importance=FALSE. Cheers, Andy > From: Scott Gilpin > > Hi - > > When using the randomForest
2010 Aug 16
0
Help for using nnet in R for NN training and testing
Hello, I want to use nnet package in R, to train and simulate a NN and get the value of MSE. I am reading in a file which has 19 input variables and one output variable and has a total of 2000 observations. The first column in the file is a column just for giving the serial numbers of the observations. I have already read in the file and also extracted the different values into the matrices to