similar to: How to fit parametric survival model using counting process data

Displaying 20 results from an estimated 4000 matches similar to: "How to fit parametric survival model using counting process data"

2008 Jan 23
2
Parametric survival models with left truncated, right censored data
Dear All, I would like to fit some parametric survival models using left truncated, right censored data in R. However I am having problems finding a function to fit parametric survival models which can handle left truncated data. I have tested both the survreg function in package survival: fit1 <- survreg(Surv(start, stop, status) ~ X + Y + Z, data=data1) and the psm function in package
2005 Jun 09
2
Weibull survival modeling with covariate
I was wondering if someone familiar with survival analysis can help me with the following. I would like to fit a Weibull curve, that may be dependent on a covariate, my dataframe "labdata" that has the fields "cov", "time", and "censor". Do I do the following? wieb<-survreg(Surv(labdata$time, labadata$censor)~labdata$cov,
2005 Aug 27
1
survival parametric question
Hi to all, I am working on design package using survival function. First using PSM and adopting a weibull specification for the baseline hazard , I have got the following results(since weibull has both PH and AFT propreties ,in addition I have used the PPHSm command): Value Std. Error z p (Intercept) 1.768 1.0007 1.77 7.73e-02 SIZE -0.707 0.0895 -7.90 2.80e-15
2012 Jan 26
1
3-parametric Weibull regression
Hello, I'm quite new to R and want to make a Weibull-regression with the survival package. I know how to build my "Surv"-object and how to make a standard-weibull regression with "survreg". However, I want to fit a translated or 3-parametric weibull dist to account for a failure-free time. I think I would need a new object in survreg.distributions, but I don't know how
2009 Nov 13
2
survreg function in survival package
Hi, Is it normal to get intercept in the list of covariates in the output of survreg function with standard error, z, p.value etc? Does it mean that intercept was fitted with the covariates? Does Value column represent coefficients or some thing else? Regards, ------------------------------------------------- tmp = survreg(Surv(futime, fustat) ~ ecog.ps + rx, ovarian,
2006 Jul 07
6
parametric proportional hazard regression
Dear all, I am trying to find a suitable R-function for parametric proportional hazard regressions. The package survival contains the coxph() function which performs a Cox regression which leaves the base hazard unspecified, i.e. it is a semi-parametric method. The package Design contains the function pphsm() which is good for parametric proportional hazard regressions when the underlying base
2005 Nov 22
3
Weibull and survival
Hi I have been asked to provide Weibull parameters from a paper using Kaplan Meir survival analysis. This is something I am not familiar with. The survival analysis in R works nicely and is the same as commercial software (only the graphs are superior in R). The Weibull does not and produces an error (see below). Any ideas why this error should occur? My approach may be spurious.
2006 Feb 28
1
ex-Gaussian survival distribution
Dear R-Helpers, I am hoping to perform survival analyses using the "ex-Gaussian" distribution. I understand that the ex-Gaussian is a convolution of exponential and Gaussian distributions for survival data. I checked the "survreg.distributions" help and saw that it is possible to mix pre-defined distributions. Am I correct to think that the following code makes the
2006 Sep 21
1
survival function with a Weibull dist
Hi I am using R to fit a survival function to my data (with a weibull distribution). Data: Survival of individuals in relation to 4 treatments ('a','b','c','g') syntax: ---- > survreg(Surv(date2)~males2, dist='weibull') But I have some problems interpreting the outcome and getting the parameters for each curve. --------- Value Std.
2004 Nov 23
6
Weibull survival regression
Dear R users, Please can you help me with a relatively straightforward problem that I am struggling with? I am simply trying to plot a baseline survivor and hazard function for a simple data set of lung cancer survival where `futime' is follow up time in months and status is 1=dead and 0=alive. Using the survival package: lung.wbs <- survreg( Surv(futime, status)~ 1, data=lung,
2009 Mar 08
2
survreg help in R
Hey all, I am trying to use the survreg function in R to estimate the mean and standard deviation to come up with the MLE of alpha and lambda for the weibull distribution. I am doing the following: times<-c(10,13,18,19,23,30,36,38,54,56,59,75,93,97,104,107,107,107) censor<-c(1,0,0,1,0,1,1,0,0,0,1,1,1,1,0,1,0,0) survreg(Surv(times,censor),dist='weibull') and I get the following
2001 Dec 21
1
proportional hazard with parametric baseline function: can it be estimated in R
Greetings -- I would like to estimate a proportional hazard model with a weibull or lognormal baseline. I have looked at both the coxph() and survreg() functions and neither appear (to me ) to do it. Am I missing something in the docs or is there another terrific package out there that will do this. Many Thanks. Carl Mason
2011 Nov 12
2
Second-order effect in Parametric Survival Analysis
Hi experts, http://r.789695.n4.nabble.com/file/n4034318/Parametric_survival_analysis_2nd-order_efffect.JPG Parametric_survival_analysis_2nd-order_efffect.JPG As we know a normal survival regression is the equation (1) Well, I'ld like to modify it to be 2nd-order interaction model as shown in equation(2) Question: Assume a and z is two covariates. x = dummy variable (1 or 0) z = factors
2008 Mar 02
1
Problem plotting curve on survival curve (something silly?)
OK this is bound to be something silly as I'm completely new to R - having started using it yesterday. However I am already warming to its lack of 'proper' GUI... I like being able to rerun a command by editing one parameter easily... try and do that in a Excel Chart Wizzard! I eventually want to use it to analyse some chemotherapy response / survival data. That data will not be
2008 Apr 28
1
Survival Regression with multiple events per subject
Dear R users! I want to process a maximum likelihood estimation for a parametric regression survival time model with multiple events per subject. the STATA command for this survival regression is: use survreg stset failure(exercise), id(optionid) local regressors itm posret negret streg `regressors', distribution(weibull) explanation: stset declares data to be survival-time data; exercise
2009 Oct 02
1
Weibull survival regression model with different shape parameters
Dear R users, I'm trying to fit a parametric survival model using the survreg function with a Weibull distribution. I'm studying the time to death of individuals from different families and I would like to fit different shape parameters (ie 1/scale in R) for each of the families. I looked it up in the help pdf and on the internet, but I couldn't find anything. Would it be possible to
2010 May 26
2
Survival analysis extrapolation
Dear all, I'm trying to fit a curve to some 1 year failure-time data, so that I can extrapolate and predict failure rates up to 3 years. The data is in the general form: Treatment Time Status Treatment A 28 0 Treatment B 28 0 Treatment B 28 0 Treatment A 28
2002 Jan 17
1
weibull in R
Hi all I try to make a weibull survival analysis on R. I know make this on GLIM, and now I try to make the GLIM exercice GLEX8 on R to learning and compare the test. The variables are: time censor group bodymass In GLIM I make: $calc %s=1 $ to fit weibull rather than exponential $input %pcl weibull $ $macro model group*bodymass $endmac$ $use weibull t w %s $ Then, GLIM estimate an alpha for the
2006 Mar 06
1
P-values from survreg (survival package) using a clusterterm
Hi all. Belove is the example from the cluster-help page wtih the output. I simply cannot figure out how to relate the estimate and robust Std. Err to the p-value. I am aware this a marginal model applying the sandwich estimator using (here I guess) an emperical (unstructered/exchangeable?) ICC. Shouldent it be, at least to some extend, comparable to the robust z-test, for rx :
2005 Nov 24
4
Survreg Weibull lambda and p
Hi All, I have conducted the following survival analysis which appears to be OK (thanks BRipley for solving my earlier problem). > surv.mod1 <- survreg( Surv(timep1, relall6)~randgrpc, data=Dataset, dist="weibull", scale = 1) > summary(surv.mod1) Call: survreg(formula = Surv(timep1, relall6) ~ randgrpc, data = Dataset, dist = "weibull", scale = 1)