similar to: CROSSOVER TRIALS IN R (Binary Outcomes)

Displaying 20 results from an estimated 5000 matches similar to: "CROSSOVER TRIALS IN R (Binary Outcomes)"

2009 May 08
1
ADAPTIVE QUADRATURE WEIGHTS AND NODES
Can anyone help me on how to get the nodes and weights of the adaptive quadrature using R. Best wishes Boikanyo. ----- The University of Glasgow, charity number SC004401
2007 May 08
3
ordered logistic regression with random effects. Howto?
I'd like to estimate an ordinal logistic regression with a random effect for a grouping variable. I do not find a pre-packaged algorithm for this. I've found methods glmmML (package: glmmML) and lmer (package: lme4) both work fine with dichotomous dependent variables. I'd like a model similar to polr (package: MASS) or lrm (package: Design) that allows random effects. I was
2007 May 31
1
Conditional logistic regression for "events/trials" format
Dear R users, I have a large individual-level dataset (~700,000 records) which I am performing a conditional logistic regression on. Key variables include the dichotomous outcome, dichotomous exposure, and the stratum to which each person belongs. Using this individual-level dataset I can successfully use clogit to create the model I want. However reading this large .csv file into R and running
2005 Oct 07
3
Converting PROC NLMIXED code to NLME
Hi, I am trying to convert the following NLMIXED code to NLME, but am running into problems concerning 'Singularity in backsolve'. As I am new to R/S-Plus, I thought I may be missing something in the NLME code. NLMIXED *********** proc nlmixed data=kidney.kidney; parms delta=0.03 gamma=1.1 b1=-0.003 b2=-1.2 b3=0.09 b4=0.35 b5=-1.43 varu=0.5; eta=b1*age+b2*sex+b3*gn+b4*an+b5*pkn+u;
2009 Dec 02
2
Error when running Conditional Logit Model
Dear R-helpers, I am very new to R and trying to run the conditional logit model using "clogit " command. I have more than 4000 observations in my dataset and try to predict the dependent variable from 14 independent variables. My command is as follows clmtest1 <- clogit(Pin~Income+Bus+Pop+Urbpro+Health+Student+Grad+NE+NW+NCC+SCC+CH+SE+MRD+strata(IDD),data=clmdata) However, it
2010 Sep 24
1
Fitting GLMM models with glmer
Hi everybody: I?m trying to rewrite some routines originally written for SAS?s PROC NLMIXED into LME4's glmer. These examples came from a paper by Nelson et al. (Use of the Probability Integral Transformation to Fit Nonlinear Mixed-Models with Nonnormal Random Effects - 2006). Firstly the authors fit a Poisson model with canonical link and a single normal random effect bi ~ N(0;Sigma^2).The
2011 Mar 10
1
PROC NLMIXED what package equivalent in R?
To account for likely differences between families in naturalization rates, we fitted a generalized linear mixed model, using PROC NLMIXED in SAS10, with the naturalization rate per genus (that is, the number of naturalized species in a genus as a proportion of the total number of introduced species in a genus) as the response variable, a variable coding genera as containing at least one native
2006 Jun 14
1
lmer and mixed effects logistic regression
I'm using FC4 and R 2.3.1 to fit a mixed effects logistic regression. The response is 0/1 and both the response and the age are the same for each pair of observations for each subject (some observations are not paired). For example: id response age 1 0 30 1 0 30 2 1 55 2 1 55 3 0 37 4 1 52 5 0 39 5 0 39 etc. I get the
2006 Aug 22
1
a generic Adaptive Gauss Quadrature function in R?
Hi there, I am using SAS Proc NLMIXED to maximize a likelihood with multivariate normal random effects. An example is the two part random effects model for repeated measures semi-continous data with a cluster at 0. I use the "model y ~ general(loglike)" statement in Proc NLMIXED, so I can specify a general log likelihood function constructed by SAS programming statements. Then the
2003 Sep 04
7
Comparison of SAS & R/Splus
I am one of only 5 or 6 people in my organization making the effort to include R/Splus as an analysis tool in everyday work - the rest of my colleagues use SAS exclusively. Today, one of them made the assertion that he believes the numerical algorithms in SAS are superior to those in Splus and R -- ie, optimization routines are faster in SAS, the SAS Institute has teams of excellent numerical
2008 Mar 07
0
How to do a time-stratified case-crossover analysis for air pollution data?
Dear Experts, I am trying to do a time-stratified case-crossover analysis on air pollution data and number of myocardial infarctions. In order to avoid model selection bias, I started with a simple simulation. I'm still not sure if my simulation is right. But the results I get from the "ts-case-crossover" are much more variable than those from a glm. Is this: a. Due to
2008 Mar 07
0
How to do a time-stratified case-crossover analysis for air pollution data? Unformatted text-version, with an additional note
Dear Experts, I am trying to do a time-stratified case-crossover analysis on air pollution data and number of myocardial infarctions. In order to avoid model selection bias, I started with a simple simulation. I'm still not sure if my simulation is right. But the results I get from the "ts-case-crossover" are much more variable than those from a glm. Is this: a. Due to the simple
2006 Jun 29
1
lmer - Is this reasonable output?
I'm estimating two models for data with n = 179 with four clusters (21, 70, 36, and 52) named siteid. I'm estimating a logistic regression model with random intercept and another version with random intercept and random slope for one of the independent variables. fit.1 <- lmer(glaucoma~(1|siteid)+x1 +x2,family=binomial,data=set1,method="ML",
2007 Apr 23
3
fitting mixed models to censored data?
Hi, I'm trying to figure out if there are any packages allowing one to fit mixed models (or non-linear mixed models) to data that includes censoring. I've done some searching already on CRAN and through the mailing list archives, but haven't discovered anything. Since I may well have done a poor job searching I thought I'd ask here prior to giving up. I understand that
2006 Jul 25
1
HELP with NLME
Hi, I was very much hoping someone could help me with the following. I am trying to convert some SAS NLMIXED code to NLME in R (v.2.1), but I get an error message. Does anyone have any suggestions? I think my error is with the random effect "u" which seems to be parametrized differently in the SAS code. In case it's helpful, what I am essentially trying to do is estimate parameters
2011 Dec 21
1
Processing time on clogit
Hi All, I'm trying to run a conditional logistic regression in R (2.14.0) using clogit from the survival package. The dataset I have is relatively small (300 observations) with 25 matched strata- there are roughly 2 controls for each case, and some strata have multiple case/control groups. When I try to fit a very simple model with a binary outcome and a single continuous exposure R seems to
2005 Jan 27
1
binomia data and mixed model
Hi, I am a first user of R. I was hoping I could get some help on some data I need to analyze. The experimental design is a complete randomized design with 2 factors (Source material and Depth). The experimental design was suppose to consist of 4 treatments replicated 3 time, Source 1 and applied at 10 cm and source 2 applied at 20 cm. During the construction of the treatmetns the depths vary
2002 Dec 10
3
clogit and general conditional logistic regression
Can someone clarify what I cannot make out from the documentation? The function 'clogit' in the 'survival' package is described as performing a "conditional logistic regression". Its return value is stated to be "an object of class clogit which is a wrapper for a coxph object." This suggests that its usefulness is confined to the sort of data which arise in
2008 Apr 22
4
Ubuntu vs. Windows
Dear List: I am very much a unix neophyte, but recently had a Ubuntu box installed in my office. I commonly use Windows XP with 3 GB RAM on my machine and the Ubuntu machine is exactly the same as my windows box (e.g., processor and RAM) as far as I can tell. Now, I recently had to run a very large lmer analysis using my windows machine, but was unable to due to memory limitations, even after
2011 Mar 30
2
glm: modelling zeros as binary and non-zeroes as coming from a continuous distribution
Hello, I'd like to implement a regression model for extremely zero-inflated continuous data using a conditional approach, whereby zeroes are modelled as coming from a binary distribution, while non-zero values are modelled as log-normal. So far, I've come across two solutions for this: one, in R, is described in the book by Gelman & Hill (http://www.amazon.com/dp/052168689X), where