similar to: residuals from pcaiv

Displaying 20 results from an estimated 100 matches similar to: "residuals from pcaiv"

2007 Dec 18
11
Ortho - a library for JavaScript Graphics and Text
I''ve written a JavaScript library called Ortho (http://www.craic.com/ ortho) on top of Prototype for creating ''diagram-style'' graphics in JavaScript. You can create histograms, graphs, timeline plots, ''maps'' of genomic data, annotated images, tree diagrams, etc. Unlike Canvas, it seamlessly integrates text with graphics and the output looks the same
2010 Jul 02
1
xyplot: key inside the plot region / lme: confidence bands for predicted
I have two questions related to plotting predicted values for a linear mixed model using xyplot: 1: With a groups= argument, I can't seem to get the key to appear inside the xyplot. (I have the Lattice book, but don't find an example that actually does this.) 2: With lme(), how can I generate confidence bands or prediction intervals around the fitted values? Once I get them, I'd
2010 Jul 15
4
Sweave: infelicities with lattice graphics
In a paper I'm writing using Sweave, I make use of lattice graphics, but don't want to explicitly show (or explain) in the article text the print() wrapper I need in code chunks for the graphs to appear. I can solve this by including each chunk twice, with different options, as in <<ortho-xyplot1-code, keep.source=TRUE, eval=FALSE>>= library(nlme) library(lattice)
2009 Aug 03
1
principal component analysis for class variables
Dear Forum, I have a class variable 1 (populations A-E), and two other class variables, variable 2 and variable 3. What I want is to see if the combination of var 2 and var 3, will give me a pattern that allows to distinguish populations. I found several packages like ade4, with pcaiv function and factoMineR. but there are not working. Using the ade4 package, when I try to build the pca: pca1
2010 Jun 22
2
xyplot: adding pooled regression lines to a paneled type="r" plot
Consider the following plot that shows separate regression lines ~ age for each subject in the Pothoff-Roy Orthodont data, with separate panels by Sex: library(nlme) #plot(Orthodont) xyplot(distance ~ age|Sex, data=Orthodont, type='r', groups=Subject, col=gray(.50), main="Individual linear regressions ~ age") I'd like to also show in each panel the pooled OLS
2005 Oct 06
1
Compare two distance matrices
Hi all, I am trying to compare two distance matrices with R. I would like to create a XY plot of these matrices and do some linear regression on it. But, I am a bit new to R, so i have a few questions (I searched in the documentation with no success). The first problem is loading a distance matrix into R. This matrix is the output of a the Phylip program Protdist and lookes like this: 5
2010 Dec 14
4
Discriminant Correspondence Analysis
Hello everyone, I am totally new to the R program. I have had a look at some pdf documents that I downloaded and that explain how to do many things in R; however, I still cannot figure out how to do what I want to do, which is to perform Discriminant Correspondence Analysis on a rectangular matrix of data that I have in an Excel file. I know R users frown upon Excel and recommend converting Excel
2005 Nov 11
1
Snow parLapply
Dear R-user, I am trying to use the function 'parLapply' from the 'snow' package which is supposed to work the same wys as 'lapply' but for a parallelized cluster of computers. The function I am trying to call in parallel is 'dudi.pca' (from the 'ade4' package) which performs principal component analyses. When I call this function on a list of
2004 Apr 01
5
boot question
What in the world am I missing?? > x<-rnorm(20) > mean(x) [1] -0.2272851 > results<-boot(x,mean,R=5) > results[2] $t [,1] [1,] -0.2294562 [2,] -0.2294562 [3,] -0.2294562 [4,] -0.2294562 [5,] -0.2294562 Jeff Morris Ortho-Clinical Diagnostics A Johnson & Johnson Co. Rochester, NY Tel: (585) 453-5794 [[alternative HTML version deleted]]
2009 Jan 24
1
Help with dudi.pca
Dear R-helpers, I have two data frames, op and em4: > str(op) 'data.frame': 37 obs. of 5 variables: $ m : num 0.202 0.336 0.122 0.139 0.14 ... $ lln : num 0.798 0.643 0.863 0.835 0.823 ... $ rrn : num 0.789 0.702 0.894 0.895 0.923 ... $ asym2: num 0.177 0.304 0.108 0.187 0.274 ... $ asym3: num 0.0755 0.0975 0.0818 0.0651 0.13 ... > str(rownames(op)) chr
2013 Aug 27
2
Encontrar las variables más importantes en componentes principales
Hola compañeros de la lista. Qué tal. Tengo un análisis de componentes principales, en el que se evalúan aproximadamente 1000 variables. Usando la función dudi.pca e inertia.dudi obtengo una cantidad de información sobre la influencia de las variables sobre los dos componentes principales. Me gustaría saber si existe alguna función que sobre esta información me arrojara la lista de
2002 Aug 22
1
accessing linux box via my network places
Ok I can see the linux box in my network places. However when I try to access the workgroup I receive this.... "test is not accessible. You might not have permission to use this network resource. Contact the administrator of this server to find out if you have access permissions. The network pat was not found." Any ideas what I'm doing wrong? Thanks, Lester Laro Ortho
2013 Oct 01
5
Análisis de componentes principales con ade4 y FactoMineR
Hola compañeros de la lista, qué tal. Estoy haciendo un análisis de componentes principales utilizando las funciones "dudi.pca" (paquete "ade4") y "PCA" (paquete "FactoMineR"). Sucede que al comparar las coordenadas de cada individuo que obtiene cada función, las que corresponden al segundo componente principal tienen idéntica magnitud pero con
2008 Jun 19
1
PrettyR (describe)
#is there a way to get NA in the table of descriptive statistics instead of the function stopping Thank you in advance #data x.f <- structure(list(Site = structure(c(9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L), .Label = c("BC", "HC", "RM119", "RM148", "RM179", "RM185",
2007 Nov 23
4
PCA with NA
Dear all, (Mac OS X 10.4.11, R 2.6.0) I have a quantitative dataset with a lot of Na?s in it. So many, that it is not possible to delete all rows with NA?s and also not possible, to delete all variables with NA?s. Is there a function for a principal component analysis, that can deal with so many NA?s. Thanks in advance Birgit Birgit Lemcke Institut f?r Systematische Botanik
2005 Jan 11
2
Re:Chi-square distance
> Hi > I'm Ph.D student and I need an R code to compute the chi square diistance between n profile rows in a matrix. > > could you help me please? > Thanks > > Paola > ____________________________________________________________
2008 Jan 18
2
plotting other axes for PCA
Hi R-community, I am doing a PCA and I need plots for different combinations of axes (e.g., PC1 vs PC3, and PC2 vs PC3) with the arrows indicating the loadings of each variables. What I need is exactly what I get using biplot (pca.object) but for other axes. I have plotted PC2 and 3 using the scores of the cases, but I don't get the arrows proportional to the loadings of each variables on
2005 Apr 07
3
analyse des correspondances multiples
bonjour, Je voudrais faire une analyse des correspondances multiples avec R. avec les repr?sentation graphiques correspondantes avec R. je ne sais pas comment proc?der .. en vour remerciant par avance Faouzi
2013 Oct 01
3
Análisis de componentes principales con ade4 y FactoMineR
Instalo ade4 correctamente y no me abren los datos como por ejemplo data(bsetal97) ¿Qué piensan de eso? De: r-help-es-bounces en r-project.org [mailto:r-help-es-bounces en r-project.org] En nombre de Francesc Carmona Enviado el: Tuesday, October 01, 2013 7:30 AM Para: r-help-es en r-project.org Asunto: Re: [R-es] Análisis de componentes principales con ade4 y FactoMineR Por definición
2006 Jul 20
2
Correspondence analysis with R -follow up
Hi all, thank you for your answers; i've tried both cca from vegan library, and dudi.coa from ade4 library; one last question: my deal is mainly with contingency tables, like the one i'm posting here acciaieria<-c(.41,.02,.44,.04,.09) laminatoio<-c(.34,.28,.26,.01,.11) fonderia<-c(.48,.05,.34,.08,.05) leghe<-c(.45,.19,.25,.03,.08)