Displaying 20 results from an estimated 100 matches similar to: "ksvm-kernel"
2009 Nov 29
2
kernlab's ksvm method freeze
Hello,
I am using kernlab to do some binary classification on aminoacid
strings.
I am using a custom kernel, so i use the kernel="matrix" option of the
ksvm method.
My (normalized) kernel matrix is of size 1309*1309, my results vector
has the same length.
I am using C-svc.
My kernlab call is something similiar to this:
ksvm(kernel="matrix", kernelMatrix, trainingDataYs,
2010 Sep 24
0
kernlab:ksvm:eps-svr: bug?
Hi,
A. In a nutshell:
The training error, obtained as "error (ret)", from the return value
of a ksvm () call for a eps-svr model is (likely) being computed
wrongly. "nu-svr" and "eps-bsvr" suffer from this as well.
I am attaching three files: (1) ksvm.R from the the kernlab package,
un-edited, (2) ksvm_eps-svr.txt: (for easier reading) containing only
eps-svr
2010 Feb 23
0
BUG with LSSVM in R:
Hello,
I have noticed a bug with LSSVM implementation in R. It could be a bug with
the LSSVM itself that causes this problem.
I thought I should post this message to see if anyone else is familiar with
this problem and explain why the result is different for odd and even number
of cases.
Once the hyperplane is found using LSSVM, the prediction results vary when
you predict odd or even number of
2008 Jun 25
1
stringdot
Hi!!
I am trying to figure out how to use the string kernel "stringdot" in kernlab.
k <- function(x,y) {
(sum(x*y) +1)*exp(-0.001*sum((x-y)^2))
}
class(k) <- "kernel"
data(promotergene)
## train svm using custom kernel
gene.k <- ksvm(Class~.,data=promotergene,kernel=k,C=10,cross=5) # works fine in this case
gene.rbf <-
2009 Apr 28
1
kernlab - custom kernel
hi,
I am using R's "kernlab" package, exactly i am doing classification using
ksvm(.) and predict.ksvm(.).I want use of custom kernel. I am getting some
error.
# Following R code works (with promotergene dataset):
library("kernlab")
s <- function(x, y) {
sum((x*y)^1.25)
}
class(s) <- "kernel"
data("promotergene")
gene <- ksvm(Class ~ .,
2012 Sep 13
0
I need help for svm package kernlab in R
I use the svm package kernlab .I have two question.
In R
library(kernlab)
m=ksvm(xtrain,ytrain,type="C-svc",kernel=custom function, C=10)
alpha(m)
alphaindex(m)
I can get alpha value and alpha index about package.
1.
Assumption that number of sample are 20.
number of support vectors are 15.
then rest 5`s alphas are 0?
2. I want use kernelMatrix
xtrain=as.matrix(xtrain)
2009 Dec 25
2
Help with SVM package Kernlab
Hi useR's,
I am resending this request since I got no response for my last post and I
am new to the list so pardon me if I am violating the protocol.
I am trying to use the "Kernlab" package for training and prediction using
SVM's. I am getting the following error when I am trying to use the predict
function:
> predictSvm = predict(modelforSVM, testSeq);
Error in
2007 Dec 17
0
kernlab and gram matrix
Hi, this is a question about the R package kernlab.
I use kernlab as a library in a C++ program. The host application
defines a graph kernel (defined by me), generates a gram matrix and
trains kernlab directly on this gram matrix, like this:
regm<-ksvm(K,y,kernel="matrix"),
where K is the n x n gram kernelMatrix of my kernel, and y is the
R-vector of quantitative target values.
2009 Oct 04
3
error installing/compiling kernlab
Hi everybody,
I''m using R on a 64-bit Ubuntu 9.04 (Jaunty). I prefer to install R
packages from source, even if they are available in Synaptic. The
problem is that I can''t install/compile kernlab. Everything works fine
until it gets to the lazy loading part:
** preparing package for lazy loading
Creating a new generic function for "terms" in "kernlab"
2007 Oct 30
0
kernlab/ ksvm: class.weights & prob.model in binary classification
Hello list,
I am faced with a two-class classification problem with highly asymetric
class sizes (class one: 99%, class two: 1%).
I'd like to obtain a class probability model, also introducing available
information on the class prior.
Calling kernlab/ksvm with the line
>
ksvm_model1<-ksvm(as.matrix(slides), as.factor(Class), class.weights= c("0"
=99, "1" =1),
2011 May 28
0
how to train ksvm with spectral kernel (kernlab) in caret?
Hello all,
I would like to use the train function from the caret package to
train a svm with a spectral kernel from the kernlab package. Sadly
a svm with spectral kernel is not among the many methods in caret...
using caret to train svmRadial:
------------------
library(caret)
library(kernlab)
data(iris)
TrainData<- iris[,1:4]
TrainClasses<- iris[,5]
set.seed(2)
2007 Aug 14
0
kernlab ksvm() cross-validation prediction response vector
Hello,
I would like to know, whether for the support vector classification function ksvm()
the response values stored in object at ymatrix are cross validated outputs/predictions:
Example code from package kernlab, function ksvm:
library(kernlab)
## train a support vector machine
filter <- ksvm(type~.,data=spam,kernel="rbfdot",kpar=list(sigma=0.05),C=5,cross=3)
filter
filter at
2009 Jul 08
1
ksvm question -- help! line search failed...
I got the data working, but now I got another problem with KSVM:
line search fails -2.793708 -0.5831701 1.870406e-05 -5.728611e-06
-5.059796e-08 -3.761822e-08 -7.308871e-13Error in
prob.model(object)[[p]]$A :
$ operator is invalid for atomic vectors
On Tue, Jul 7, 2009 at 6:45 PM, Steve
Lianoglou<mailinglist.honeypot at gmail.com> wrote:
> Hi,
>
> On Jul 7, 2009, at 6:44 PM,
2012 Aug 19
1
kernlab | ksvm error
Dear list,
I am using the ksvm function from kernlab as follows:
(1) learning
> svm.pol4 <- ksvm(class.labs ~ ., data = train.data, prob.model = T, scale
= T, kernel = "polydot")
(2) prediction
> svm.pol.prd4 <- predict(svm.pol4, train.data, type = "probabilities")[,2]
But unfortunately, when calling the prediction, once in every 10s of times
(using the exact
2009 Jul 07
1
ksvm question -- help! cannot get program to run...
What's wrong? Very sad about this...
model <- ksvm(x=mytraindata[, -1], y=factor(mytraindata[, 1]), prob.model=T)
Error in .local(x, ...) : x and y don't match.
2011 Aug 26
1
kernlab: ksvm() bug?
Hello all,
I'm trying to run a gird parameter search for a svm.
Therefore I'M using the ksvm function from the kernlab package.
----
svp <- ksvm(Ktrain,ytrain,type="nu-svc",nu=C)
----
The problem is that the optimization algorithm does not return
for certain parameters.
I tried to use setTimeLimit() but that doesn't seem to help.
I suspect that ksvm() calls c code that
2008 Sep 14
0
ksvm accessing the slots of S4 object
I am using kernlab to build svm models. I am not sure how to access the different slots of the object. For instance if I want to get the nuber of support vectors for each of model I am building and store it in a vector.
>ksvm.model <- ksvm(Class ~ ., data = somedata,kernel = "vanilladot", cross = 10, type ="C-svc")
>names(attributes(ksvm.model))
[1] "param"
2010 Jun 11
1
Decision values from KSVM
Hi,
I'm working on a project using the kernlab library.
For one phase, I want the "decision values" from the SVM prediction, not
the class label. the e1071 library has this function, but I can't find
the equivalent in ksvm.
In general, when an SVM is used for classification, the label of an
unknown test-case is decided by the "sign" of its resulting value as
2009 Oct 06
0
Kernlab: multidimensional targets in rvm(), ksvm(), gausspr()
Hi there,
I'm trying to do a regression experiment on a multidimensional
dataset where both x and y in the model are multidimensional
vectors.
I'm using R version 2.9.2, updated packages, on a Linux box.
I've tried gausspr(), ksvm() and rvm(), and the models are
computed fine, but I'm always getting the same error message
when I try to use predict():
"Error in
2009 Oct 23
1
Data format for KSVM
Hi,
I have a process using svm from the e1071 library. it works.
I want to try using the KSVM library instead. The same data used wiht
e1071 gives me an error with KSVM.
My data is a data.frame.
sample code:
svm_formula <- formula(y ~ a + B + C)
svm_model <- ksvm(formula, data=train_data, type="C-svc",
kernel="rbfdot", C=1)
I get the following error: