similar to: dispersion_parameter_GLMM's

Displaying 20 results from an estimated 4000 matches similar to: "dispersion_parameter_GLMM's"

2007 Mar 04
1
residuals in lme4 package
Hi, I have not been able to calculate residuals in the lme4 package. I've been trying the resid() function after I ran a GLMM with the lmer() function, but I get an error message that says "residuals are not inserted yet". I looked it up in the "help" history and I realized that several people have had this problem in the past, related to some bug in this function and
2008 Apr 21
1
estimate of overdispersion with glm.nb
Dear R users, I am trying to fully understand the difference between estimating overdispersion with glm.nb() from MASS compared to glm(..., family = quasipoisson). It seems that (i) the coefficient estimates are different and also (ii) the summary() method for glm.nb suggests that overdispersion is taken to be one: "Dispersion parameter for Negative Binomial(0.9695) family taken to be
2008 May 16
1
gam negative.binomial
Dear list members, while I appreciate the possibility to deal with overdispersion for count data either by specifying the family argument to be quasipoisson() or negative.binomial(), it estimates just one overdispersion parameter for the entire data set. In my applications I often would like the estimate for overdispersion to depend on the covariates in the same manner as the mean. For example,
2012 Oct 14
2
Poisson Regression: questions about tests of assumptions
I would like to test in R what regression fits my data best. My dependent variable is a count, and has a lot of zeros. And I would need some help to determine what model and family to use (poisson or quasipoisson, or zero-inflated poisson regression), and how to test the assumptions. 1) Poisson Regression: as far as I understand, the strong assumption is that dependent variable mean = variance.
2011 Jan 27
1
Quasi-poisson glm and calculating a qAIC and qAICc...trying to modilfy Bolker et al. 2009 function to work for a glm model
Sorry about re-posting this, it never went out to the mailing list when I posted this to r-help forum on Nabble and was pending for a few days, now that I am subscribe to the mailing list I hope that this goes out: I've been a viewer of this forum for a while and it has helped out a lot, but this is my first time posting something. I am running glm models for richness and abundances. For
2003 Mar 12
2
quasipoisson, glm.nb and AIC values
Dear R users, I am having problems trying to fit quasipoisson and negative binomials glm. My data set contains abundance (counts) of a species under different management regimens. First, I tried to fit a poisson glm: > summary(model.p<-glm(abund~mgmtcat,poisson)) Call: glm(formula = abund ~ mgmtcat, family = poisson) . . . (Dispersion parameter
2011 Apr 07
1
Quasipoisson with geeglm
Dear all, I am trying to use the GEE methodology to fit a trend for the number of butterflies observed at several sites. In total, there are 66 sites, and 19 years for which observations might be available. However, only 326 observations are available (instead of 1254). For the time being, I ignore the large number of missing values, and the fact that GEE is only valid under MCAR. When I run the
2010 Nov 27
1
d.f. in F test of nested glm models
Dear all, I am fitting a glm to count data using poison errors with the log link. My goal is to test for the significance of model terms by calling the anova function on two nested models following the recommendation in Michael Crawley's guide to Statistical Computing. Without going into too much detail, essentially, I have a small overdispersion problem (errors do not fit the poisson
2010 Aug 19
1
GLMM random effects
Hello, I have a couple questions regarding generalized linear mixed models specifically around fitting the random effects terms correctly to account for any pseudo-replication. I am reading through and trying to follow examples from Zuur et al. Mixed Effects Models and Extensions in Ecology with R, but am still at bit unsure if I am specifying the models correctly. Background information: Our
2008 Feb 20
1
p-value for fixed effect in generalized linear mixed model
Dear R-users, I am currently trying to switch from SAS to R, and am not very familiar with R yet, so forgive me if this question is irrelevant. If I try to find the significance of the fixed factor "spikes" in a generalized linear mixed model, with "site" nested within "zone" as a random factor, I compare following two models with the anova function:
2008 Oct 31
1
AIC for quasipoisson link
Dear fellows, I'm trying to extract the AIC statistic from a GLM model with quasipoisson link. The formula I'm referring to is AIC = -2(maximum loglik) + 2df * phi with phi the overdispersion parameter, as reported in: Peng et al., Model choice in time series studies os air pollution and mortality. J R Stat Soc A, 2006; 162: pag 190. Unfortunately, the function logLik
2003 Dec 18
1
bootstrap pValue in DClusters
Hello R-List I use DClusters package (I work in a cancer regestry). I have 2 questions about it: 1-how is it possible to get back the bootstrap pValue? I mean the pValue of the calculated statistic with respect of the distribution of this statistic under the null hypothesis. 2-how is it possible to test an overdispersion in the poisson model? for choosing a best model I need this mesure of
2010 Sep 12
1
R-equivalent Stata command: poisson or quasipoisson?
Hello R-help, According to a research article that covers the topic I'm analyzing, in Stata, a Poisson pseudo-maximum-likelihood (PPML) estimation can be obtained with the command poisson depvar_ij ln(indepvar1_ij) ln(indepvar2_ij) ... ln(indepvarN_ij), robust I looked up Stata help for the command, to understand syntax and such: www.stata.com/help.cgi?poisson Which simply says
2007 Mar 24
1
p values in lme4 package
Dear R-users, I was wondering if anybody knows if it's possible to obtain a p value for the full model of a GLMM with the lme4 package. I was told that I should check whether the full model including all the predictor variables is significant before doing stepwise regression or further analysis, but I can't figure out how to do this. I also wanted to know if there's a way of
2008 Oct 12
2
Overdispersion in the lmer models
Dear All, I am working with linear mixed-effects models using the lme4 package in R. I created a model using the lmer function including some main effects, a three-way interaction and a random effect. Because I work with a binomial and poisson distribution, I want to know whether there is overdispersion in my data or not. Does anybody know how I can retrieve this information from R? Thank you
2015 Jun 25
1
Estimating overdispersion when using glm for count and binomial data
Dear All I recently proposed a simple modification to Wedderburn's 1974 estimate of overdispersion for count and binomial data, which is used in glm for the quasipoisson and quasibinomial families (see the reference below). Although my motivation for the modification arose from considering sparse data, it will be almost identical to Wedderburn's estimate when the data are not sparse.
2003 Jan 16
3
Overdispersed poisson - negative observation
Dear R users I have been looking for functions that can deal with overdispersed poisson models. Some (one) of the observations are negative. According to actuarial literature (England & Verall, Stochastic Claims Reserving in General Insurance , Institute of Actiuaries 2002) this can be handled through the use of quasi likelihoods instead of normal likelihoods. The presence of negatives is not
2013 Jan 31
2
glm poisson and quasipoisson
Hello, I have a question about modelling via glm. I have a dataset (see dput) that looks like as if it where poisson distributed (actually I would appreciate that) but it isnt because mean unequals var. > mean (x) [1] 901.7827 > var (x) [1] 132439.3 Anyway, I tried to model it via poisson and quasipoisson. Actually, just to get an impression how glm works. But I dont know how to
2003 Feb 18
4
glm and overdispersion
Hi, I am performing glm with binomial family and my data show slight overdispersion (HF<1.5). Nevertheless, in order to take into account for this heterogeneity though weak, I use F-test rather than Chi-square (Krackow & Tkadlec, 2001). But surprisingly, outputs of this two tests are exactly similar. What is the reason and how can I scale the output by overdispersion ?? Thank you,
2006 Jan 02
2
mixed effects models - negative binomial family?
Hello all, I would like to fit a mixed effects model, but my response is of the negative binomial (or overdispersed poisson) family. The only (?) package that looks like it can do this is glmm.ADMB (but it cannot run on Mac OS X - please correct me if I am wrong!) [1] I think that glmmML {glmmML}, lmer {Matrix}, and glmmPQL {MASS} do not provide this "family" (i.e. nbinom, or