similar to: covariance question which has nothing to do with R

Displaying 20 results from an estimated 2000 matches similar to: "covariance question which has nothing to do with R"

2010 Feb 06
1
Canberra distance
Hi the list, According to what I know, the Canberra distance between X et Y is : sum[ (|x_i - y_i|) / (|x_i|+|y_i|) ] (with | | denoting the function 'absolute value') In the source code of the canberra distance in the file distance.c, we find : sum = fabs(x[i1] + x[i2]); diff = fabs(x[i1] - x[i2]); dev = diff/sum; which correspond to the formula : sum[ (|x_i - y_i|) /
2018 Jan 17
1
mgcv::gam is it possible to have a 'simple' product of 1-d smooths?
I am trying to test out several mgcv::gam models in a scalar-on-function regression analysis. The following is the 'hierarchy' of models I would like to test: (1) Y_i = a + integral[ X_i(t)*Beta(t) dt ] (2) Y_i = a + integral[ F{X_i(t)}*Beta(t) dt ] (3) Y_i = a + integral[ F{X_i(t),t} dt ] equivalents for discrete data might be: 1) Y_i = a + sum_t[ L_t * X_it * Beta_t ] (2) Y_i
2001 Mar 05
1
Canberra dist and double zeros
Canberra distance is defined in function `dist' (standard library `mva') as sum(|x_i - y_i| / |x_i + y_i|) Obviously this is undefined for cases where both x_i and y_i are zeros. Since double zeros are common in many data sets, this is a nuisance. In our field (from which the distance is coming), it is customary to remove double zeros: contribution to distance is zero when both x_i
2001 Mar 05
1
Canberra dist and double zeros
Canberra distance is defined in function `dist' (standard library `mva') as sum(|x_i - y_i| / |x_i + y_i|) Obviously this is undefined for cases where both x_i and y_i are zeros. Since double zeros are common in many data sets, this is a nuisance. In our field (from which the distance is coming), it is customary to remove double zeros: contribution to distance is zero when both x_i
2004 Apr 18
2
lm with data=(means,sds,ns)
Hi Folks, I am dealing with data which have been presented as at each x_i, mean m_i of the y-values at x_i, sd s_i of the y-values at x_i number n_i of the y-values at x_i and I want to linearly regress y on x. There does not seem to be an option to 'lm' which can deal with such data directly, though the regression problem could be algebraically
2003 Oct 23
1
Variance-covariance matrix for beta hat and b hat from lme
Dear all, Given a LME model (following the notation of Pinheiro and Bates 2000) y_i = X_i*beta + Z_i*b_i + e_i, is it possible to extract the variance-covariance matrix for the estimated beta_i hat and b_i hat from the lme fitted object? The reason for needing this is because I want to have interval prediction on the predicted values (at level = 0:1). The "predict.lme" seems to
2010 Apr 25
1
function pointer question
Hello, I have the following function that receives a "function pointer" formal parameter name "fnc": loocv <- function(data, fnc) { n <- length(data.x) score <- 0 for (i in 1:n) { x_i <- data.x[-i] y_i <- data.y[-i] yhat <- fnc(x=x_i,y=y_i) score <- score + (y_i - yhat)^2 } score <- score/n
2007 Feb 01
3
Help with efficient double sum of max (X_i, Y_i) (X & Y vectors)
Greetings. For R gurus this may be a no brainer, but I could not find pointers to efficient computation of this beast in past help files. Background - I wish to implement a Cramer-von Mises type test statistic which involves double sums of max(X_i,Y_j) where X and Y are vectors of differing length. I am currently using ifelse pointwise in a vector, but have a nagging suspicion that there is a
2008 Dec 01
1
linear functional relationships with heteroscedastic & non-Gaussian errors - any packages around?
Hi, I have a situation where I have a set of pairs of X & Y variables for each of which I have a (fairly) well-defined PDF. The PDF(x_i) 's and PDF(y_i)'s are unfortunately often rather non-Gaussian although most of the time not multi--modal. For these data (estimates of gas content in galaxies), I need to quantify a linear functional relationship and I am trying to do this as
2018 Mar 15
0
stats 'dist' euclidean distance calculation
> 3x3 subset used > Locus1 Locus2 Locus3 > Samp1 GG <NA> GG > Samp2 AG CA GA > Samp3 AG CA GG > > The euclidean distance function is defined as: sqrt(sum((x_i - y_i)^2)) My > assumption was that the difference between
2010 Feb 05
3
metafor package: effect sizes are not fully independent
In a classical meta analysis model y_i = X_i * beta_i + e_i, data {y_i} are assumed to be independent effect sizes. However, I'm encountering the following two scenarios: (1) Each source has multiple effect sizes, thus {y_i} are not fully independent with each other. (2) Each source has multiple effect sizes, each of the effect size from a source can be categorized as one of a factor levels
2005 Jun 15
2
need help on computing double summation
Dear helpers in this forum, This is a clarified version of my previous questions in this forum. I really need your generous help on this issue. > Suppose I have the following data set: > > id x y > 023 1 2 > 023 2 5 > 023 4 6 > 023 5 7 > 412 2 5 > 412 3 4 > 412 4 6 > 412 7 9 > 220 5 7 > 220 4 8 > 220 9 8 > ...... > Now I want to compute the
2018 Mar 15
3
stats 'dist' euclidean distance calculation
Hello, I am working with a matrix of multilocus genotypes for ~180 individual snail samples, with substantial missing data. I am trying to calculate the pairwise genetic distance between individuals using the stats package 'dist' function, using euclidean distance. I took a subset of this dataset (3 samples x 3 loci) to test how euclidean distance is calculated: 3x3 subset used
2004 Dec 15
2
how to fit a weighted logistic regression?
I tried lrm in library(Design) but there is always some error message. Is this function really doing the weighted logistic regression as maximizing the following likelihood: \sum w_i*(y_i*\beta*x_i-log(1+exp(\beta*x_i))) Does anybody know a better way to fit this kind of model in R? FYI: one example of getting error message is like: > x=runif(10,0,3) > y=c(rep(0,5),rep(1,5)) >
2010 Dec 15
4
Generacion de binomiales correlacionadas
Buenas tardes, Estoy interesado en generar observaciones de una distribucion binomial bivariada en la que hay _cierto_ grado de correlacion (denotemoslo rho). Podria por favor alguien indicarme como hacerlo en R? Este es el contexto. Supongamos que se tienen dos experimentos en los que la variable respuesta _sigue_ una distribucion binomial, i.e., X_i ~Binomial(n_i, p_i), i=1,2 y que, por ahora,
2011 Jul 19
1
notation question
Dear list, I am currently writing up some of my R models in a more formal sense for a paper, and I am having trouble with the notation. Although this isn't really an 'R' question, it should help me to understand a bit better what I am actually doing when fitting my models! Using the analysis of co-variance example from MASS (fourth edition, p 142), what is the correct notation for the
2005 Jul 07
1
CDF plot
Dear all, I have define a discrete distribution P(y_i=x_i)=p_i, which I want to plot a CDF plot. However, I can not find a function in R to draw it for me after searching R and R-archive. I only find the one for the sample CDF instead my theoretical one. I find stepfun can do it for me, however, I want to plot some different CDF with same support x in one plot. I can not manage how to do it with
2013 Mar 02
1
Errors-In-Variables in R
In reference to [1], how would you solve the following regression problem: Given observations (X_i,Y_i) with known respective error distributions (e_X_i,e_Y_i) (say, 0-mean Gaussian with known STD), find the parameters a and b which maximize the Likelihood of Y = a*X + b Taking the example further, how many of the very simplified assumptions from the above example can be lifted or eased and R
2013 Jun 23
1
2SLS / TSLS / SEM non-linear
Dear all, I try to conduct a SEM / two stage least squares regression with the following equations: First: X ~ IV1 + IV2 * Y Second: Y ~ a + b X therein, IV1 and IV2 are the two instruments I would like to use. the structure I would like to maintain as the model is derived from economic theory. My problem here is that I have trouble solving the equations to get the reduced form so I can run
2006 Nov 15
3
how to create this design matrix?
Hi all, I have a multiple-linear regression problem. There are 13 columns of data, the whole data matrix is: n x 13, where n is the number of samples. Now I want to regress EACH of the first 12 columns onto the 13th column, with 2-parameter linear model y_i = b0 + b1 * x_i, where i goes from 1 to n, and b0 is the intercept. How do I create a design matrix to do the 12-column regression