similar to: nnet() fit criteria

Displaying 20 results from an estimated 2000 matches similar to: "nnet() fit criteria"

2010 Nov 26
1
Issues with nnet.default for regression/classification
Hi, I'm currently trying desperately to get the nnet function for training a neural network (with one hidden layer) to perform a regression task. So I run it like the following: trainednet <- nnet(x=traindata, y=trainresponse, size = 30, linout = TRUE, maxit=1000) (where x is a matrix and y a numerical vector consisting of the target values for one variable) To see whether the network
2006 Sep 11
2
Translating R code + library into Fortran?
Hi all, I'm running a monte carlo test of a neural network tool I've developed, and it looks like it's going to take a very long time if I run it in R so I'm interested in translating my code (included below) into something faster like Fortran (which I'll have to learn from scratch). However, as you'll see my code loads the nnet library and uses it quite a bit, and I
2007 Mar 20
1
How does glm(family='binomial') deal with perfect sucess?
Hi all, Trying to understand the logistic regression performed by glm (i.e. when family='binomial'), and I'm curious to know how it treats perfect success. That is, lets say I have the following summary data x=c(1,2,3,4,5,6) y=c(0,.04,.26,.76,.94,1) w=c(100,100,100,100,100,100) where x is y is the probability of success at each value of x, calculated across w observations.
2007 Mar 27
1
Using nnet
I have a problem when using nnet to predict the negative values. For example : X = matrix(c(1,1,0,0,1,0,1,0),4,2) X Y = matrix(c(0,1,1,0)) - 0.5 # XOR - 0.5 Y nn = nnet(X,Y,size=3) val = predict(nn,X) val # this is expected to be close to Y, but it's not ! The 'val' is always positive. I tried to change the options, but the result isn't much better. Could someone give me an
2003 Aug 19
3
On the Use of the nnet Library
Dear List, I am trying to solve a problem by the neural network method(library: nnet). The problem is to express Weight in terms of Age , Sex and Height for twenty people. The data frame consists of 20 observations with four variables: Sex, Age, Height and Weight. Sex is treated as a factor, Age and Weight are variables normalized to unity, as usual. I wanted to construct a neural network, and so
2007 Jan 28
2
nnet question
Hello, I use nnet to do prediction for a continuous variable. after that, I calculate correlation coefficient between predicted value and real observation. I run my code(see following) several time, but I get different correlation coefficient each time. Anyone know why? In addition, How to calculate prediction accuracy for prediction of continuous variable? Aimin thanks, > m.nn.omega
2009 Jun 07
1
Inf in nnet final value for validation data
Hi, I use nnet for my classification problem and have a problem concerning the calculation of the final value for my validation data.(nnet only calculates the final value for the training data). I made my own final value formula (for the training data I get the same value as nnet): # prob-matrix pmatrix <- cat*fittedValues tmp <- rowSums(pmatrix) # -log likelihood
2007 Jul 15
1
NNET re-building the model
Hello, I've been working with "nnet" and now I'd like to use the weigths, from the fitted model, to iterpret some of variables impornatce. I used the following command: mts <- nnet(y=Y,x=X,size =4, rang = 0.1, decay = 5e-4, maxit = 5000,linout=TRUE) X is (m x n) Y is (m x 1) And then I get the coeficients by: Wts<-coef(mts) b->h1 i1->h1
2006 Dec 04
0
How to calculate area between ECDF and CDF?
Hi all, I'm working with data to which I'm fitting three-parameter weibull distributions (shape, scale & shift). The data are of low sample sizes (between 10 and 80 observations), so I'm reluctant to check my fits using chi-square (also, I'd like to avoid bin choice issues). I'd use the Kolmogorov-Smirnov test, but of course this is invalid when the distribution
2009 May 24
2
accuracy of a neural net
Hi. I started with a file which was a sparse 982x923 matrix and where the last column was a variable to be predicted. I did principle component analysis on it and arrived at a new 982x923 matrix. Then I ran the code below to get a neural network using nnet and then wanted to get a confusion matrix or at least know how accurate the neural net was. I used the first 22 principle components only for
2011 Jan 05
0
Nnet and AIC: selection of a parsimonious parameterisation
Hi All, I am trying to use a neural network for my work, but I am not sure about my approach to select a parsimonious model. In R with nnet, the IAC has not been defined for a feed-forward neural network with a single hidden layer. Is this because it does not make sens mathematically in this case? For example, is this pseudo code sensible? Thanks in advance for your help. I am sorry if this
2012 Oct 17
0
Superficie de respuesta con rsm y nnet
Hola compañeros de la lista. Los molesto con la siguiente duda. En un diseño central compuesto (CCD) con dos factores (V1 y V2) y una variable de respuesta (R), utilizando valores codificados (-1.4142, -1, 0, 1, 1.4182), al aplicar la orden: rsm.segundo.orden <- rsm(R ~ Bloque + SO(V1, V2), data = DATOS.Codificados) Obtengo el siguiente modelo: R = 103.92 -2.16
2004 Nov 29
0
R: nnet questions
hi all i'm new to the area of neural networks. i've been reading some references and seem to understand some of the learning algorithms. i am very familiar with regression and would just like to see how neural nets handle this problem so i've been using the nnet package. i simply want to use a 3 layer neural net, ie 1 input, 1 hidden layer (where the hidden layer is linear, since i
2008 Jul 03
2
Plotting Prediction Surface with persp()
Hi all I have a question about correct usage of persp(). I have a simple neural net-based XOR example, as follows: library(nnet) xor.data <- data.frame(cbind(expand.grid(c(0,1),c(0,1)), c(0,1,1,0))) names(xor.data) <- c("x","y","o") xor.nn <- nnet(o ~ x + y, data=xor.data, linout=FALSE, size=1) # Create an (x.y) surface and predict over all points d <-
2003 Jul 11
2
Nonliner Rgression using Neural Nnetworks
Hi, I am an old hand at chemistry but a complete beginner at statistics including R computations. My question is whether you can carry out nonlinear multivariate regression analysis in R using neural networks, where the output variable can range from -Inf to + Inf., unlike discriminant analysis where the output is confined to one or zero. The library nnet seems to work only in the latter
2012 Sep 21
0
using neural network in R (nnet)
Hi all, I have considered neural network to classify the health status of the cow. I found a very neatly written R codes for classification method in here<http://home.strw.leidenuniv.nl/~jarle/IAC/RRoutines/classification-example.R> . It would be very helpful if you can answer some of the questions, that I am struggling with, I have set of time series data from different animals, I use
2012 Apr 26
0
nnet formular for reproduce the expect output
Dear All, I am recently working on neural network using nnet package. The network has 4 hidden layers and 1 output layer, the target output 1 or 0. The model I use is as follows: nn<-nnet(target~f1+f2+f3+f4+f5+f6+f7+f8+f9+f10,data=train,size=4,linout=FALSE,decay=0.025,maxit=800) It works well and give me ROC 0.85. However, when I want to reproduce the result in java, I cannot get the same
2004 Sep 03
2
windowing strategies
Hello to everybody, Does anyone has implemented a function for evaluating models using windowing strategies, such as growing window or sliding window ones? The aim is to evaluate regression models on a time series data. I do not use cross-validation once data sorted in a radom way does not make sense when evaluating time series. Thanks Joao Moreira
2008 Apr 26
1
Variables selection in Neural Networks
Hi folks, I want to apply a neural network to a data set to classify the observations in the different classes from a concrete response variable. The idea is to prove different models from network modifying the number of neurons of the hidden layer to control overfitting. But, to select the best model how I can choose the relevant variables? How I can eliminate those that are not significant for
2005 Feb 08
1
Toying with neural networks
Hello all, Ive been playing with nnet (package 'nnet') and Ive come across this problem. nnet doesnt seems to like to have more than 1000 weights. If I do: > data(iris) > names(iris)[5] <- "species" > net <- nnet(species ~ ., data=iris, size=124, maxit=10) # weights: 995 initial value 309.342009 iter 10 value 21.668435 final value 21.668435 stopped after 10