Displaying 20 results from an estimated 8000 matches similar to: "Lmer, P-values and mixed logistic regression"
2006 Aug 08
1
fixed effects constant in mcmcsamp
I'm fitting a GLMM to some questionnaire data. The structure is J individuals,
nested within I areas, all of whom answer the same K (ordinal) questions. The
model I'm using is based on so-called continuation ratios, so that it can be
fitted using the lme4 package.
The lmer function fits the model just fine, but using mcmcsamp to judge the
variability of the parameter estimates produces
2009 Feb 24
2
lmer, estimation of p-values and mcmcsamp
(To the list moderator: I just subscribed to the list. Apologies for not
having done so longer before trying to post.)
Hi all,
I am currently using lmer to analyze data from an experiment with a
single fixed factor (treatment, 6 levels) and a single random factor
(block). I've been trying to follow the online guidance for estimating
p-values for parameter estimates on these and other
2006 Aug 08
1
fixed effects following lmer and mcmcsamp - which to present?
Dear all,
I am running a mixed model using lmer. In order to obtain CI of
individual coefficients I use mcmcsamp. However, I need advice which
values that are most appropriate to present in result section of a
paper. I have not used mixed models and lmer so much before so my
question is probably very naive. However, to avoid to much problems with
journal editors and referees addicted to
2007 Feb 13
1
lme4/lmer: P-Values from mcmc samples or chi2-tests?
Dear R users,
I have now tried out several options of obtaining p-values for
(quasi)poisson lmer models, including Markov-chain Monte Carlo sampling
and single-term deletions with subsequent chi-square tests (although I
am aware that the latter may be problematic).
However, I encountered several problems that can be classified as
(1) the quasipoisson lmer model does not give p-values when
2009 Feb 11
2
generalized mixed model + mcmcsamp
Hi,
I have fitted a generalized linear mixed effects model using lmer
(library lme4), and the family = quasibinomial. I have tried to obtain a
MCMC sample, but on calling mcmcsamp(model1, 1000) I get the following
error which I don't understand at all:
Error in .local(object, n, verbose, ...) : Update not yet written
traceback() delivers:
4: .Call(mer_MCMCsamp, ans, object)
3:
2007 Mar 12
2
Lmer Mcmc Summary and p values
Dear R users
I am trying to obtain p-values for (quasi)poisson lmer models, including
Markov-chain Monte Carlo sampling and the command summary.
>
> My problems is that p values derived from both these methods are
totally different. My question is
(1) there a bug in my code and
>
(2) How can I proceed, left with these uncertainties in the estimations of
> the p-values?
>
> Below
2010 Jan 31
2
lmer, mcmcsamp, coda, HPDinterval
Hi,
I've got a linear mixed model created using lmer:
A6mlm <- lmer(Score ~ division + (1|school), data=Age6m)
(To those of you to whom this model looks familiar, thanks for your patience
with this & my other questions.) Anyway, I was trying this to look at the
significance of my fixed effects:
A6post <- mcmcsamp(A6mlm, 50000)
library(coda)
HPDinterval(A6post)
..but I got this
2006 Jan 28
1
yet another lmer question
I've been trying to keep track with lmer, and now I have a couple of
questions with the latest version of Matrix (0.995-4). I fit 2 very
similar models, and the results are severely rounded in one case and
rounded not at all in the other.
> y <- 1:10
> group <- rep (c(1,2), c(5,5))
> M1 <- lmer (y ~ 1 + (1 | group))
> coef(M1)
$group
(Intercept)
1 3.1
2
2007 Feb 12
1
lmer and estimation of p-values: error with mcmcpvalue()
Dear all,
I am currently analyzing count data from a hierarchical design, and I?ve
tried to follow the suggestions for a correct estimation of p-values as
discusssed at R-Wiki
(http://wiki.r-project.org/rwiki/doku.php?id=guides:lmer-tests&s=lme%20and%20aov).
However, I have the problem that my model only consists of parameters
with just 1 d.f. (intercepts, slopes), so that the
2007 Apr 27
1
Example of mcmcsamp() failing with lmer() output
Hi,
I would appreciate help with the following model
<<1>>=
gunload <- read.table(hh('datasets/gunload.dat'), header = T)
gunload$method <- factor(gunload$method, labels = c('new', 'old'))
gunload$physique <- factor(gunload$group, labels = c('slight',
'average', 'heavy'))
gunload$team9 <- factor(rep(1:9, each = 2))
@
This
2006 Oct 20
1
mcmcsamp - How does it work?
Hello,
I am a chemical student and I make use of 'lme/lmer function'
to handle experiments in split-plot structures.
I know about the mcmcsamp and I think that it's very promissory.
I would like knowing "the concept behind" of the mcmcsamp function.
I do not want the C code of the MCMCSAMP function.
I would like to get the "pseudo-algorithm" to understanding
that
2006 Jan 10
2
lmer(): nested and non-nested factors in logistic regression
Thanks to some help by Doug Bates (and the updated version of the Matrix
package), I've refined my question about fitting nested and non-nested
factors in lmer(). I can get it to work in linear regression but it
crashes in logistic regression. Here's my example:
# set up the predictors
n.age <- 4
n.edu <- 4
n.rep <- 100
n.state <- 50
n <- n.age*n.edu*n.rep
age.id
2008 Aug 29
1
significance of random effects in poisson lmer
Hi,
I am having problems trying to assess the significance of random terms
in a generalized linear mixed model using lme4 package. The model
describes bird species richness R along roads (offset by log length of
road log_length) as a function of fixed effects Shrub (%shrub cover) and
Width (width of road), and random effect Site (nested within Site
Cluster).
>From reading answers to previous
2007 Aug 15
2
lmer coefficient distributions and p values
I am helping my wife do some statistical analysis. She is a biologist,
and she has performed some measurements on various genotypes of
mice. My background is in applied mathematics and engineering, and I
have a fairly good statistics background, but I am by no means a PhD
level expert in statistical methods.
We have used the lmer package to fit various models for the various
experiments that she
2008 Apr 13
2
prediction intervals from a mixed-effects models?
How can I get prediction intervals from a mixed-effects model?
Consider the following example:
library(nlme)
fm3 <- lme(distance ~ age*Sex, data = Orthodont, random = ~ 1)
df3.1 <- with(Orthodont, data.frame(age=seq(5, 20, 5),
Subject=rep(Subject[1], 4),
Sex=rep(Sex[1], 4)))
predict(fm3, df3.1, interval='prediction')
# M01 M01
2006 Apr 20
2
Missing p-values using lmer()
Hello,
I’m trying to perform a REML analysis using the lmer() function (lme4
package). Well, it seems to work well, except that I’m not getting any
p-value (see example below). Can someone tell me what I did wrong?
Thanks for your help,
Amélie
> library(gdata)
> dive <- read.xls("C:/Documents and Settings/Amelie/My Documents/Postdoc/CE
2005-2006/divebydive.xls",
2006 Dec 07
1
lmer, p-values and all that
Hello,
I've just located the illuminating explanation by Douglas Bates on degrees
of freedom in mixed models.
The take-home message appears to be: don't trust the p-values from lme.
Questions:
Should I give up hypothesis testing for fixed effects terms in mixed models?
Has my time spent reading Pinheiro & Bates been in vain?
Is there a publication on this issue?
Thanks,
Dan Bebber
2007 Aug 21
1
small issue with densityplot
Hi folks,
This is really minor but to someone not familiar with the various tentacles of the lmer package it could be really annoying. I was trying to plot the posterior density of the fixed effect parameters of a lmer model,
> hr.mcmc = mcmcsamp(hr.lmer, n=50000)
> densityplot(hr.mcmc, plot.points=F)
There is this error,
"Error in densityplot(hr.mcmc, plot.points = F) :
no
2007 Aug 03
1
extracting dispersion parameter from quasipoisson lmer model
Hi,
I would like to obtain the dispersion parameter for a quasipoisson model for later use in calculating QAIC values for model comparison.Can anyone suggest a method of how to go about doing this?
The idea I have now is that I could use the residual deviance divided by the residual degrees of freedom to obtain the dispersion parameter. The residual deviance is available in the summary
2008 Jan 24
0
(lme4: lmer) mcmcsamp: Error in if (var(y) == 0)
I've got a problem with "mcmcsamp" used with glmer objects produced
with "lmer" from the lme4 package.
When calling mcmcsamp, I get the error
Error in if (var(y) == 0) { : missing value where TRUE/FALSE needed
This does not occur with all models, but I can't find anything wrong
with the dataset.
If the error is in my data, can someone tell me what I am looking