similar to: Using lrm

Displaying 20 results from an estimated 6000 matches similar to: "Using lrm"

2007 Jan 24
2
Logistic regression model + precision/recall
Hi, I am using logistic regression model named lrm(Design) Rite now I was using Area Under Curve (AUC) for testing my model. But, now I have to calculate precision/recall of the model on test cases. For lrm, precision and recal would be simply defined with the help of 2 terms below: True Positive (TP) - Number of test cases where class 1 is given probability >= 0.5. False Negative (FP) -
2006 Jul 04
1
using weights in lrm
Dear all, just a quick question regarding weights in logistic regression. I do results <- lrm(y.js ~ h.hhsize + h.death1 + h.ill1 + h.ljob1 + h.fin1 + h.div1 + h.fail1 + h.sex + h.ch.1
2006 Nov 21
1
Logistic regression model (Urjent help needed)
I am using logistic regression model (lrm) of package Design. Can some one please tell me how to calculate the average Area Under Curve (AUC) for n-fold cross-validation The help for lrm function says to do cross validation like this f <- lrm( cy ~ x1 + x2, x=TRUE, y=TRUE) val <- validate.lrm(f, method="cross", B=5) Now I dont know what to do with variable "val" to
2007 Jan 21
1
logistic regression model + Cross-Validation
Hi, I am trying to cross-validate a logistic regression model. I am using logistic regression model (lrm) of package Design. f <- lrm( cy ~ x1 + x2, x=TRUE, y=TRUE) val <- validate.lrm(f, method="cross", B=5) My class cy has values 0 and 1. "val" variable will give me indicators like slope and AUC. But, I also need the vector of predicted values of class variable
2009 Aug 17
3
Help understanding lrm function of Design library
Hi, I'm developing an experiment with logistic regression. I've come across the lrm function in the Design library. While I understand and can use the basic functionality, there are a ton of options that go beyond my knowledge. I've carefully read the help page for lrm, but don't understand many of the arguments and optional return values. (penalty, penalty.matrix,
2002 Oct 24
2
glm and lrm disagree with zero table cells
I've noticed that glm and lrm give extremely different results if you attempt to fit a saturated model to a dataset with zero cells. Consider, for instance the data from, Agresti's Death Penalty example [0]. The crosstab table is: , , PENALTY = NO VIC DEF BLACK WHITE BLACK 97 52 WHITE 9 132 , , PENALTY = YES VIC DEF BLACK WHITE BLACK 6 11
2009 Oct 14
1
different L2 regularization behavior between lrm, glmnet, and penalized?
The following R code using different packages gives the same results for a simple logistic regression without regularization, but different results with regularization. This may just be a matter of different scaling of the regularization parameters, but if anyone familiar with these packages has insight into why the results differ, I'd appreciate hearing about it. I'm new to
2009 Sep 26
1
Summary/Bootstrap for Design library's lrm function
Can anyone tell me what I might be doing incorrectly for an ordinal logistic regression for lrm? I cannot get R(2.9.1)to run either summary nor will it let me bootstrp to validate. ### Y is a 5 value measure with a range from 1-5, the independent variables are the same. N=75 but when we knock out the NAs it comes down to 51#### > lrm(formula = Y ~ permemp + rev + gconec + scorpstat, data =
2008 Oct 09
2
Singular information matrix in lrm.fit
Hi R helpers, I'm fitting large number of single factor logistic regression models as a way to immediatly discard factor which are insignificant. Everything works fine expect that for some factors I get error message "Singular information matrix in lrm.fit" which breaks whole execution loop... how to make LRM not to throw this error and simply skip factors with singularity
2005 Jul 12
1
Design: predict.lrm does not recognise lrm.fit object
Hello I'm using logistic regression from the Design library (lrm), then fastbw to undertake a backward selection and create a reduced model, before trying to make predictions against an independent set of data using predict.lrm with the reduced model. I wouldn't normally use this method, but I'm contrasting the results with an AIC/MMI approach. The script contains: # Determine full
2017 Sep 14
0
Help understanding why glm and lrm.fit runs with my data, but lrm does not
> On Sep 14, 2017, at 12:30 AM, Bonnett, Laura <L.J.Bonnett at liverpool.ac.uk> wrote: > > Dear all, > > I am using the publically available GustoW dataset. The exact version I am using is available here: https://drive.google.com/open?id=0B4oZ2TQA0PAoUm85UzBFNjZ0Ulk > > I would like to produce a nomogram for 5 covariates - AGE, HYP, KILLIP, HRT and ANT. I have
2010 Dec 25
2
predict.lrm vs. predict.glm (with newdata)
Hi all I have run into a case where I don't understand why predict.lrm and predict.glm don't yield the same results. My data look like this: set.seed(1) library(Design); ilogit <- function(x) { 1/(1+exp(-x)) } ORDER <- factor(sample(c("mc-sc", "sc-mc"), 403, TRUE)) CONJ <- factor(sample(c("als", "bevor", "nachdem",
2017 Sep 14
1
Help understanding why glm and lrm.fit runs with my data, but lrm does not
Fixed 'maxiter' in the help file. Thanks. Please give the original source of that dataset. That dataset is a tiny sample of GUSTO-I and not large enough to fit this model very reliably. A nomogram using the full dataset (not publicly available to my knowledge) is already available in http://biostat.mc.vanderbilt.edu/tmp/bbr.pdf Use lrm, not lrm.fit for this. Adding maxit=20 will
2004 Mar 22
2
Handling of NAs in functions lrm and robcov
Hi R-helpers I have a dataframe DF (lets say with the variables, y, x1, x2, x3, ..., clust) containing relatively many NAs. When I fit an ordinal regression model with the function lrm from the Design library: model.lrm <- lrm(y ~ x1 + x2, data=DF, x=TRUE, y=TRUE) it will by default delete missing values in the variables y, x1, x2. Based on model.lrm, I want to apply the robust covariance
2012 May 27
2
Unable to fit model using “lrm.fit”
Hi, I am running a logistic regression model using lrm library and I get the following error when I run the command: mod1 <- lrm(death ~ factor(score), x=T, y=T, data = env1) Unable to fit model using ?lrm.fit? where score is a numeric variable from 0 to 6. LRM executes fine for the following commands: mod1 <- lrm(death ~ score, x=T, y=T, data = env1) mod1<- lrm(death ~
2017 Sep 14
3
Help understanding why glm and lrm.fit runs with my data, but lrm does not
Dear all, I am using the publically available GustoW dataset. The exact version I am using is available here: https://drive.google.com/open?id=0B4oZ2TQA0PAoUm85UzBFNjZ0Ulk I would like to produce a nomogram for 5 covariates - AGE, HYP, KILLIP, HRT and ANT. I have successfully fitted a logistic regression model using the "glm" function as shown below. library(rms) gusto <-
2009 Aug 21
1
Possible bug with lrm.fit in Design Library
Hi, I've come across a strange error when using the lrm.fit function and the subsequent predict function. The model is created very quickly and can be verified by printing it on the console. Everything looks good. (In fact, the performance measures are rather nice.) Then, I want to use the model to predict some values. I get the following error: "fit was not created by a Design
2009 Oct 25
1
Getting AIC from lrm in Design package
I am trying to obtain the AICc after performing logistic regression using the Design package. For simplicity, I'll talk about the AIC. I tried building a model with lrm, and then calculating the AIC as follows: likelihood.ratio <- unname(lrm(succeeded~var1+var2,data=scenario,x=T,y=T)$stats["Model L.R."]) #Model likelihood ratio??? model.params <- 2 #Num params in my model AIC
2008 Mar 03
1
using 'lrm' for logistic regression
Hi R, I am getting this error while trying to use 'lrm' function with nine independent variables: > res = lrm(y1994~WC08301+WC08376+WC08316+WC08311+WC01001+WC08221+WC08106+WC0810 1+WC08231,data=y) singular information matrix in lrm.fit (rank= 8 ). Offending variable(s): WC08101 WC08221 Error in j:(j + params[i] - 1) : NA/NaN argument Now, if I take choose only four
2009 Sep 04
2
lrm in Design package--missing value where TRUE/FALSE needed
Hi, A error message arose while I was trying to fit a ordinal model with lrm() I am using R 2.8 with Design package. Here is a small set of mydata: RC RS Sex CovA CovB CovC CovD CovE 2 1 0 1 1 0 -0.005575280 2 2 1 0 1 0 1 -0.001959580 2 3 0 0 0 1 0 -0.004725880 2 0 0 0 1 0 0 -0.005504850 2 2 1 1 0 0 0 -0.003880170 1 2 1 0 0 1 0 -0.006074230 2 2 1 0 0 1 1 -0.003963920 2 2 1 0 0 1 0