Displaying 20 results from an estimated 8000 matches similar to: "Extracting parameters for Gamma Distribution"
2002 Oct 08
2
Frailty and coxph
Does someone know the rules by which 'coxph' returns 'frail', the
predicted frailty terms? In my test function:
-----------------------------------------------
fr <- function(){
#testing(frailty terms in 'survival'
require(survival)
dat <- data.frame(exit = 1:6,
event = rep(1, 6),
x = rep(c(0, 1), 3),
2003 Aug 04
1
coxph and frailty
Hi:
I have a few clarification questions about the elements returned by
the coxph function used in conjuction with a frailty term.
I create the following group variable:
group <- NULL
group[id<50] <- 1
group[id>=50 & id<100] <- 2
group[id>=100 & id<150] <- 3
group[id>=150 & id<200] <- 4
group[id>=200 & id<250] <- 5
group[id>=250
2012 Feb 03
1
coxme with frailty--variance of random effect?
Dear all,
This probably stems from my lack of understanding of the model, but I
do not understand the variance of the random effect reported in coxme.
Consider the following toy example:
#------------------------------- BEGINNING OF CODE
------------------------------------------------
library(survival)
library(coxme)
#--- Generate toy data:
d <- data.frame(id = c(1:100), #
2005 Sep 07
1
Survival analysis with COXPH
Dear all,
I would have some questions on the coxph function for survival analysis,
which I use with frailty terms.
My model is:
mdcox<-coxph(Surv(time,censor)~ gender + age + frailty(area, dist='gauss'),
data)
I have a very large proportion of censored observations.
- If I understand correctly, the function mdcox$frail will return the random
effect estimated for each group on the
2007 Apr 17
3
Extracting approximate Wald test (Chisq) from coxph(..frailty)
Dear List,
How do I extract the approximate Wald test for the
frailty (in the following example 17.89 value)?
What about the P-values, other Chisq, DF, se(coef) and
se2? How can they be extracted?
######################################################>
kfitm1
Call:
coxph(formula = Surv(time, status) ~ age + sex +
disease + frailty(id,
dist = "gauss"), data = kidney)
2011 Apr 08
1
Variance of random effects: survreg()
I have the following questions about the variance of the random effects in the survreg() function in the survival package:
1) How can I extract the variance of the random effects after fitting a model?
For example:
set.seed(1007)
x <- runif(100)
m <- rnorm(10, mean = 1, sd =2)
mu <- rep(m, rep(10,10))
test1 <- data.frame(Time = qsurvreg(x, mean = mu, scale= 0.5, distribution =
2006 Sep 19
0
How to interpret these results from a simple gamma-frailty model
Dear R users,
I'm trying to fit a gamma-frailty model on a simulated dataset, with 6 covariates, and I'm running into some results I do not understand. I constructed an example from my simulation code, where I fit a coxph model without frailty (M1) and with frailty (M2) on a number of data samples with a varying degree of heterogeneity (I'm running R 2.3.1, running takes ~1 min).
2005 Jul 21
1
output of variance estimate of random effect from a gamma frailty model using Coxph in R
Hi,
I have a question about the output for variance of random effect from a gamma
frailty model using coxph in R. Is it the vairance of frailties themselves or
variance of log frailties? Thanks.
Guanghui
2009 Feb 23
1
predicting cumulative hazard for coxph using predict
Hi
I am estimating the following coxph function with stratification and frailty?where each person had multiple events.
m<-coxph(Surv(dtime1,status1)~gender+cage+uplf+strata(enum)+frailty(id),xmodel)
?
> head(xmodel)
id enum dtime status gender cage uplf
1 1008666 1 2259.1412037 1 MA 0.000 0
2 1008666 2 36.7495023 1 MA 2259.141 0
3 1008666
2012 Dec 03
1
fitting a gamma frailty model (coxph)
Dear all,
I have a data set<http://yaap.it/paste/c11b9fdcfd68d02b#gIVtLrrme3MaiQd9hHy1zcTjRq7VsVQ8eAZ2fol1lUc=>with
6 clusters, each containing 48 (possibly censored, in which case
"event = 0") survival times. The "x" column contains a binary explanatory
variable. I try to describe that data with a gamma frailty model as follows:
library(survival)
mod <-
2006 Oct 24
3
Error when naming rows of dataset
I get the following error when I try reading in a table.
How are 1.1, 1.2, 1.3 duplicate row names? Thx.
> table <- read.table('latestWithNumber.txt', header=T)
Error in "row.names<-.data.frame"(`*tmp*`, value = c("1.1", "1.2", "1.3", :
duplicate 'row.names' are not allowed
Yongchuan
2004 Nov 08
1
coxph models with frailty
Dear R users:
I'm generating the following survival data:
set.seed(123)
n=200 #sample size
x=rbinom(n,size=1,prob=.5) #binomial treatment
v=rgamma(n,shape=1,scale=1) #gamma frailty
w=rweibull(n,shape=1,scale=1) #Weibull deviates
b=-log(2) #treatment's slope
t=exp( -x*b -log(v) + log(w) ) #failure times
c=rep(1,n) #uncensored indicator
id=seq(1:n) #individual frailty indicator
2010 Apr 26
1
Interpreting output of coxph with frailty.gamma
Dear all,
this is probably a very silly question, but could anyone tell me what the
different parameters in a coxph model with a frailty.gamma term mean?
Specifically I have two questions:
(1) Compared to a "normal" coxph model, it seems that I obtain two standard
errors [se(coef) and se2].
What is the difference between those?
(2) Again compared to a "normal" coxph model,
2007 Sep 12
1
enquiry
Dear R-help,
I am trying to estimate a Cox model with nested effects basing on the
minimization of the overall AIC; I have two frailties terms, both gamma
distributed. There is a error message (theta2 argument misses) and I
don?t understand why. I would like to know what I have wrong. Thank you
very much for your time.
fitM7 <- coxph(Surv(lifespan,censured) ~ south + frailty(id,
2013 Oct 09
1
frailtypack
I can't comment on frailtypack issues, but would like to mention that coxme will handle
nested models, contrary to the statement below that "frailtypack is perhaps the only ....
for nested survival data".
To reprise the original post's model
cgd.nfm <- coxme(Surv(Tstart, Tstop, Status) ~ Treatment + (1 | Center/ID), data=cgd.ag)
And a note to the poster-- you should
2011 Jun 25
2
cluster() or frailty() in coxph
Dear List,
Can anyone please explain the difference between cluster() and
frailty() in a coxph? I am a bit puzzled about it. Would appreciate
any useful reference or direction.
cheers,
Ehsan
> marginal.model <- coxph(Surv(time, status) ~ rx + cluster(litter), rats)
> frailty.model <- coxph(Surv(time, status) ~ rx + frailty(litter), rats)
> marginal.model
Call:
coxph(formula =
2011 Sep 02
1
Parameters in Gamma Frailty model
Dear all,
I'm new to frailty model. I have a question on the output from 'survival'
pack. Below is the output. What does gamma1,2,3 refer to? How do I
calculate joint hazard function or marginal hazard function using info
below? Many thanks!
Call:
coxph(formula = surv ~ as.factor(tibia) + frailty(as.factor(bdcat)),
data = try)
n=877 (1 observation deleted due to missingness)
2009 Aug 31
2
How to extract the theta values from coxph frailty models
Hello,
I am working on the frailty model using coxph functions. I am running
some simulations and want to store the variance of frailty (theta)
values from each simulation result. Can anyone help me how to extract
the theta values from the results. I appreciate any help.
Thanks
Shankar Viswanathan
2007 Apr 20
1
Approaches of Frailty estimation: coxme vs coxph(...frailty(id, dist='gauss'))
Dear List,
In documents (Therneau, 2003 : On mixed-effect cox
models, ...), as far as I came to know, coxme penalize
the partial likelihood (Ripatti, Palmgren, 2000) where
as frailtyPenal (in frailtypack package) uses the
penalized the full likelihood approach (Rondeau et al,
2003).
How, then, coxme and coxph(...frailty(id,
dist='gauss')) differs? Just the coding algorithm, or
in
2005 Oct 07
3
Converting PROC NLMIXED code to NLME
Hi,
I am trying to convert the following NLMIXED code to NLME, but am
running into problems concerning 'Singularity in backsolve'. As I am new
to R/S-Plus, I thought I may be missing something in the NLME code.
NLMIXED
***********
proc nlmixed data=kidney.kidney;
parms delta=0.03 gamma=1.1 b1=-0.003 b2=-1.2 b3=0.09 b4=0.35 b5=-1.43
varu=0.5;
eta=b1*age+b2*sex+b3*gn+b4*an+b5*pkn+u;