similar to: question about k in step

Displaying 20 results from an estimated 4000 matches similar to: "question about k in step"

2010 Feb 10
1
using step() with package geepack
I'm using the package geepack to fit GEE models. Does anyone know of methods for add1 and drop1 for a 'geeglm' model object, or perhaps a method for extractAIC based on the QIC of Pan 2001? I see there has been some mention of this on R-help a few years ago (RSiteSearch("QIC")). The package does provide an anova method for its model objects, and update() seems to work:
2008 Nov 28
2
AIC function and Step function
I would like to figure out the equations for calculating "AIC" in both "step() function" and "AIC () function". They are different. Then I just type "step" in the R console, and found the "AIC" used in "step() function" is "extractAIC". I went to the R help, and found: "The criterion used is AIC = - 2*log L + k *
2011 Feb 23
1
request for patch in "drop1" (add.R)
By changing three lines in drop1 from access based on $ to access based on standard accessor methods (terms() and residuals()), it becomes *much* easier to extend drop1 to work with other model types. The use of $ rather than accessors in this context seems to be an oversight rather than a design decision, but maybe someone knows better ... In particular, if one makes these changes (which I am
2005 Feb 24
2
Forward Stepwise regression based on partial F test
I am hoping to get some advise on the following: I am looking for an automatic variable selection procedure to reduce the number of potential predictor variables (~ 50) in a multiple regression model. I would be interested to use the forward stepwise regression using the partial F test. I have looked into possible R-functions but could not find this particular approach. There is a function
2007 Mar 13
3
inconsistent behaviour of add1 and drop1 with a weighted linear model
Dear R Help, I have noticed some inconsistent behaviour of add1 and drop1 with a weighted linear model, which affects the interpretation of the results. I have these data to fit with a linear model, I want to weight them by the relative size of the geographical areas they represent. _________________________________________________________________________________________ > example
2012 Nov 02
1
add1() alternative
Hi, I'm trying to build a hierarchical logistic regression model with lme4 package, but I have a problem on selecting the variables to include in this model. In a simple logistic regression, using Forward selection, i use a likelihood ratio test to check which variables i should include in the model, using the function add1(). The problem is that this function doesn't work with the
2003 May 08
1
All possible subset selection?
Hello, I am wondering if there is a function in R to do all possible subset selection, e.g. using AIC/BIC. It seems to me the function step can not do all possible selection. I am also want to know why the following functions give me different results. It seems I missed some points here. lm <- lm(y ~., data=somedata) AIC(lm) extractAIC(lm) Many thanks, Zheng Huang
2013 May 01
1
Trouble with methods() after loading gdata package.
Greetings to r-help land. I've run into some program crashes and I've traced them back to methods() behavior after the package gdata is loaded. I provide now a minimal re-producible example. This seems bugish to me. How about you? dat <- data.frame(x = rnorm(100), y = rnorm(100)) lm1 <- lm(y ~ x, data = dat) methods(class = "lm") ## OK so far library(gdata)
2010 Aug 27
1
step
Hi, how can I change the significance level in test F to select variable in step command? I used step(model0, ~x1+x2+x3+x4, direction=c("forward"), test='F', alpha=.05) but it does't work. -------------------------------------- Silvano Cesar da Costa Departamento de Estat?stica Universidade Estadual de Londrina Fone: 3371-4346
2009 Apr 20
4
automatic exploration of all possible loglinear models?
Is there a way to automate fitting and assessing loglinear models for several nominal variables . . . something akin to step or drop1 or add1 for linear or logistic regression? Thanks. --Chris -- Christopher W. Ryan, MD SUNY Upstate Medical University Clinical Campus at Binghamton 40 Arch Street, Johnson City, NY 13790 cryanatbinghamtondotedu "If you want to build a ship, don't drum
2011 Jun 21
1
Stepwise Manova
Hello all, I have a question on manova in R: I'm using the function "manova()" from the stats package. Is there anything like a stepwise (backward or forward) manova in R (like there is for regression and anova). When I enter: step(Model1, data=Mydata) R returns the message: Error in drop1.mlm(fit, scope$drop, scale = scale, trace = trace, k = k, : no 'drop1'
2011 May 21
2
unbalanced anova with subsampling (Type III SS)
Hello R-users, I am trying to obtain Type III SS for an ANOVA with subsampling. My design is slightly unbalanced with either 3 or 4 subsamples per replicate. The basic aov model would be: fit <- aov(y~x+Error(subsample)) But this gives Type I SS and not Type III. But, using the drop() option: drop1(fit, test="F") I get an error message: "Error in
2000 Apr 04
2
Hierarchical Regression
Howdy! I'm a clinical psychologist desperately trying to get rid of SPSS. I just discovered R and like it quite a lot. The main reason why we're still using SPSS is the hierarchical regression where you enter bundles of variables into a linear model and get an R-sqare increase tested with an F-test. I already found add1 and drop1 but would rather need addn and dropn. Is there
2000 Apr 19
1
scale factors/overdispersion in GLM: possible bug?
I've been poking around with GLMs (on which I am *not* an expert) on behalf of a student, particularly binomial (standard logit link) nested models with overdispersion. I have one possible bug to report (but I'm not confident enough to be *sure* it's a bug); one comment on the general inconsistency that seems to afflict the various functions for dealing with overdispersion in GLMs
2008 Oct 22
1
forward stepwise regression using Mallows Cp
So I recognize that: 1. many people hate forward stepwise regression (i've read the archives)--but I need it 2. step() or stepAIC are two ways to get a stepwise regression in R But here's the thing: I can't seem to figure out how to specify that I want the criteria to be Mallow's Cp (and then to subsequently tell me what the Cp stat is). I know it has something to do with
2008 Aug 01
5
drop1() seems to give unexpected results compare to anova()
Dear all, I have been trying to investigate the behaviour of different weights in weighted regression for a dataset with lots of missing data. As a start I simulated some data using the following: library(MASS) N <- 200 sigma <- matrix(c(1, .5, .5, 1), nrow = 2) sim.set <- as.data.frame(mvrnorm(N, c(0, 0), sigma)) colnames(sim.set) <- c('x1', 'x2') # x1 & x2 are
2011 Jun 20
1
Stepwise model comparisons for mlogit
I am trying to perform a backwards stepwise variable selection with an mlogit model. The usual functions, step(), drop1(), and dropterm() do not work for mlogit models. Update() works but I am only able to use it manually, i.e. I have to type in each variable I wish to remove by hand on a separate line. My goal is to write some code that will systematically remove a certain set of variables
2005 Apr 23
1
question about about the drop1
the data is : >table.8.3<-data.frame(expand.grid( marijuana=factor(c("Yes","No"),levels=c("No","Yes")), cigarette=factor(c("Yes","No"),levels=c("No","Yes")), alcohol=factor(c("Yes","No"),levels=c("No","Yes"))), count=c(911,538,44,456,3,43,2,279))
2006 Aug 06
1
extractAIC using surf.ls
Although the 'spatial' documentation doesn't mention that extractAIC works, it does seem to give an output. I may have misunderstood, but shouldn't the following give at least the same d.f.? > library(spatial) > data(topo, package="MASS") > extractAIC(surf.ls(2, topo)) [1] 46.0000 437.5059 > extractAIC(lm(z ~ x+I(x^2)+y+I(y^2)+x:y, topo)) [1]
2008 May 13
1
R help: problems with step function
Dear List Members, I have encountered two problems when using the step function to select models. To better illustrate the problems, attached is an R image which includes the objects needed to run the code attached. lm.data.frame have factor variables with 3 levels. The following run shows the first problem. AICs (* and **) are different. I noticed that the Df for rs13482096:rs13483699 is 4,