Displaying 20 results from an estimated 9000 matches similar to: "model.matrix for a factor effect with no intercept"
2007 Jan 08
2
Contrasts for ordered factors
Dear all,
I do not seem to grasp how contrasts are set for ordered factors. Perhaps someone can elighten me?
When I work with ordered factors, I would often like to be able to reduce the used polynomial to a simpler one (where possible). Thus, I would like to explicetly code the polynomial but ideally, the intial model (thus, the full polynomial) would be identical to one with an ordered factor.
1999 May 05
1
Ordered factors , was: surrogate poisson models
For ordered factor the natural contrast coding would be to parametrize by
the succsessive differences between levels, which does not assume equal
spacing
of factor levels as does the polynomial contrasts (implicitly at least).
This requires the contr.cum, which could be:
contr.cum <- function (n, contrasts = TRUE)
{
if (is.numeric(n) && length(n) == 1)
levs <- 1:n
2009 Dec 17
1
poly() with unnormalized values
How can I get the result of, e.g., poly(1:3. degree=2) to give me the
unnormalized integer coefficients
usually used to explain orthogonal polynomial contrasts, e.g,
-1 1
0 -2
1 1
As I understand things, the columns of x^{1:degree} are first centered
and then
are normalized by 1/sqrt(col sum of squares), but I can't
see how to relate this to what is returned by poly().
>
2005 Apr 13
2
multinom and contrasts
Hi,
I found that using different contrasts (e.g.
contr.helmert vs. contr.treatment) will generate
different fitted probabilities from multinomial
logistic regression using multinom(); while the fitted
probabilities from binary logistic regression seem to
be the same. Why is that? and for multinomial logisitc
regression, what contrast should be used? I guess it's
helmert?
here is an example
2004 Mar 03
1
Confusion about coxph and Helmert contrasts
Hi,
perhaps this is a stupid question, but i need some help about
Helmert contrasts in the Cox model.
I have a survival data frame with an unordered factor `group'
with levels 0 ... 5.
Calculating the Cox model with Helmert contrasts, i expected that
the first coefficient would be the same as if i had used treatment
contrasts, but this is not true.
I this a error in reasoning, or is it
2005 Apr 23
2
ANOVA with both discreet and continuous variable
Hi all,
I have dataset with 2 independent variable, one (x1)
is continuous, the other (x2) is a categorical
variable with 2 levels. The dependent variable (y) is
continuous. When I run linear regression y~x1*x2, I
found that the p value for the continuous independent
variable x1 changes when different contrasts was used
(helmert vs. treatment), while the p values for the
categorical x2 and
2001 Jun 15
1
contrasts in lm and lme
I am using RW 1.2.3. on an IBM PC 300GL.
Using the data bp.dat which accompanies
Helen Brown and Robin Prescott
1999 Applied Mixed Models in Medicine. Statistics in Practice.
John Wiley & Sons, Inc., New York, NY, USA
which is also found at www.med.ed.ac.uk/phs/mixed. The data file was opened
and initialized with
> dat <- read.table("bp.dat")
>
2003 Aug 14
1
gnls - Step halving....
Hi all,
I'm working with a dataset from 10 treatments, each
treatment with 30 subjects, each subject measured 5
times. The plot of the dataset suggests that a
3-parameter logistic could be a reasonable function to
describe the data. When I try to fit the model using
gnls I got the message 'Step halving factor reduced
below minimum in NLS step'. I´m using as the initial
values of the
2005 Jun 23
4
contrats hardcoded in aov()?
On 6/23/05, RenE J.V. Bertin <rjvbertin at gmail.com> wrote:
> Hello,
>
> I was just having a look at the aov function source code, and see that when the model used does not have an Error term, Helmert contrasts are imposed:
>
> if (is.null(indError)) {
> ...
> }
> else {
> opcons <- options("contrasts")
>
2008 Sep 26
1
Type I and Type III SS in anova
Hi all,
I have been trying to calculate Type III SS in R for an unbalanced two-way
anova. However, the Type III SS are lower for the first factor compared to
type I but higher for the second factor (see below). I have the impression
that Type III are always lower than Type I - is that right?
And a clarification about how to fit Type III SS. Fitting model<-aov(y~a*b)
in the base package and
2010 Apr 21
5
Bugs? when dealing with contrasts
R version 2.10.1 (2009-12-14)
Copyright (C) 2009 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale
R is a collaborative project with
2010 Sep 23
2
Contraste polinomial con dos factores con niveles no equidistantes
Hola compañeros de la lista, qué tal.
Los molesto con la siguiente duda: Tengo un experimento con dos
factores A y B, cada uno de los cuales tiene los siguientes niveles (que
son concentraciones de dos hormonas vegetales aplicadas a plantas):
niveles del factor A: 0, 0.2, 0.5, 1
niveles del factor B: 0, 0.1, 0.2, 0.5, 1
y mi variable de respuesta es continua, todo dentro del set de datos
2007 Oct 09
2
fit.contrast and interaction terms
Dear R-users,
I want to fit a linear model with Y as response variable and X a categorical variable (with 4 categories), with the aim of comparing the basal category of X (category=1) with category 4. Unfortunately, there is another categorical variable with 2 categories which interact with x and I have to include it, so my model is s "reg3: Y=x*x3". Using fit.contrast to make the
2006 May 11
2
greco-latin square
Hi,
I am analyzing a repeated-measures Greco-Latin Square with the aov command.
I am using aov to calculate the MSs and then picking by hand the appropriate
neumerator and denominator terms for the F tests.
The data are the following:
responseFinger
mapping.code Subject.n index middle ring
little
----------------------------------------------------------------------------
1 1
2005 Nov 24
2
type III sums of squares in R
Hi everyone,
Can someone explain me how to calculate SAS type III sums of squares in
R? Not that I would like to use them, I know they are problematic. I
would like to know how to calculate them in order to demonstrate that
strange things happen when you use them (for a course for example). I
know you can use drop1(lm(), test="F") but for an lm(y~A+B+A:B), type
III SSQs are only
2006 Apr 19
1
Can't run code from "Mixed Effects Models in S and S-plus"
Dear R-users:
I can't run the following code from "Mixed Effects Models in S and S-plus".
library( nlme )
options( width = 65, digits = 5 )
options( contrasts = c(unordered = "contr.helmert", ordered = "contr.poly")
)
# Chapter 5 Extending the Basic Linear Mixed-Effects Models
# 5.1 General Formulation of the Extended Model
data( Orthodont )
vf1Fixed
2011 May 21
2
unbalanced anova with subsampling (Type III SS)
Hello R-users,
I am trying to obtain Type III SS for an ANOVA with subsampling. My design
is slightly unbalanced with either 3 or 4 subsamples per replicate.
The basic aov model would be:
fit <- aov(y~x+Error(subsample))
But this gives Type I SS and not Type III.
But, using the drop() option:
drop1(fit, test="F")
I get an error message:
"Error in
2000 Aug 01
1
Testing for parallel slopes
I'm running a series of simple bivariate linear regressions on grouped
data. I want to test the slopes to see if they are parallel. I normally
use analysis of covariance to do so, looking at interaction between the
covariate and the factor to make this determination.
VR3 pp.149 - 154 has a very nice example of an ANOCOVA, ending with a
discussion of this very operation.
My question has
2008 Aug 26
2
options("contrasts")
Code:
> options("contrasts")
$contrasts
factor ordered
"contr.treatment" "contr.poly"
I want to change the first entry ONLY, without retyping "contr.poly". How do
I do it? I have tried various possibilities and cannot get anything to work.
I found out that the response to options("contrasts") has class
2006 Aug 17
1
Setting contrasts for polr() to get same result of SAS
Hi all,
I am trying to do a ordered probit regression using polr(), replicating a
result from SAS.
>polr(y ~ x, dat, method='probit')
suppose the model is y ~ x, where y is a factor with 3 levels and x is a
factor with 5 levels,
To get coefficients, SAS by default use the last level as reference, R by
default use the first level (correct me if I was wrong),
The result I got is a