similar to: GLM function with poisson distribution

Displaying 20 results from an estimated 10000 matches similar to: "GLM function with poisson distribution"

2011 Jul 01
1
Poisson GLM with a logged dependent variable...just asking for trouble?
Dear R-helpers, I'm using a GLM with poisson errors to model integer count data as a function of one non-integer covariate. The model formula is: log(DV) ~ glm(log(IV,10),family=poisson). I'm getting a warning because the logged DV is no longer an integer. I have three questions: 1) Can I ignore the warning, or is logging the DV (resulting in non-integers) a serious violation of the
2013 Jan 31
2
glm poisson and quasipoisson
Hello, I have a question about modelling via glm. I have a dataset (see dput) that looks like as if it where poisson distributed (actually I would appreciate that) but it isnt because mean unequals var. > mean (x) [1] 901.7827 > var (x) [1] 132439.3 Anyway, I tried to model it via poisson and quasipoisson. Actually, just to get an impression how glm works. But I dont know how to
2010 Apr 09
2
computation of dispersion parameter in quasi-poisson glm
Hi list, can anybody point me to the trick how glm is computing the dispersion parameter in quasi-poisson regression, eg. glm(...,family="quasipoisson")? Thanks &regards, Sven
2008 Aug 11
1
Prediction confidence intervals for a Poisson GLM
Un texte encapsul? et encod? dans un jeu de caract?res inconnu a ?t? nettoy?... Nom : non disponible URL : <https://stat.ethz.ch/pipermail/r-help/attachments/20080811/b8dc0378/attachment.pl>
2003 Apr 08
1
truncated poisson in glm / glmmPQL
Hi I'm a postgrad in ecology, and have recently started to use R. I'm planning to model various sets of animal abundance (i.e. count) data in relation to habitat data using glm's and/or glmmPQL's. However, some of my potential response variables have many zeros. From what I gather the "family = ..." option in the command line does not allow for the direct
2009 Jan 20
1
Poisson GLM
This is a basics beginner question. I attempted fitting a a Poisson GLM to data that is non-integer ( I believe Poisson is suitable in this case, because it is modelling counts of infections, but the data collected are all non-negative numbers with 2 decimal places). My question is, since R doesn't return an error with this glm fitting, is it important that the data is non-integer. How does
2010 Sep 12
1
R-equivalent Stata command: poisson or quasipoisson?
Hello R-help, According to a research article that covers the topic I'm analyzing, in Stata, a Poisson pseudo-maximum-likelihood (PPML) estimation can be obtained with the command poisson depvar_ij ln(indepvar1_ij) ln(indepvar2_ij) ... ln(indepvarN_ij), robust I looked up Stata help for the command, to understand syntax and such: www.stata.com/help.cgi?poisson Which simply says
2013 Feb 18
1
nobs() with glm(family="poisson")
Hi! The nobs() method for glm objects always returns the number of cases with non-null weights in the data, which does not correspond to the number of observations for Poisson regression/log-linear models, i.e. when family="poisson" or family="quasipoisson". This sounds dangerous since nobs() is, as the documentation states, primarily aimed at computing the Bayesian
2012 Oct 14
2
Poisson Regression: questions about tests of assumptions
I would like to test in R what regression fits my data best. My dependent variable is a count, and has a lot of zeros. And I would need some help to determine what model and family to use (poisson or quasipoisson, or zero-inflated poisson regression), and how to test the assumptions. 1) Poisson Regression: as far as I understand, the strong assumption is that dependent variable mean = variance.
2011 Jan 27
1
Quasi-poisson glm and calculating a qAIC and qAICc...trying to modilfy Bolker et al. 2009 function to work for a glm model
Sorry about re-posting this, it never went out to the mailing list when I posted this to r-help forum on Nabble and was pending for a few days, now that I am subscribe to the mailing list I hope that this goes out: I've been a viewer of this forum for a while and it has helped out a lot, but this is my first time posting something. I am running glm models for richness and abundances. For
2003 Jan 16
3
Overdispersed poisson - negative observation
Dear R users I have been looking for functions that can deal with overdispersed poisson models. Some (one) of the observations are negative. According to actuarial literature (England & Verall, Stochastic Claims Reserving in General Insurance , Institute of Actiuaries 2002) this can be handled through the use of quasi likelihoods instead of normal likelihoods. The presence of negatives is not
2003 Mar 12
2
quasipoisson, glm.nb and AIC values
Dear R users, I am having problems trying to fit quasipoisson and negative binomials glm. My data set contains abundance (counts) of a species under different management regimens. First, I tried to fit a poisson glm: > summary(model.p<-glm(abund~mgmtcat,poisson)) Call: glm(formula = abund ~ mgmtcat, family = poisson) . . . (Dispersion parameter
2011 Oct 13
2
GLM and Neg. Binomial models
Hi userRs! I am trying to fit some GLM-poisson and neg.binomial. The neg. Binomial model is to account for over-dispersion. When I fit the poisson model i get: (Dispersion parameter for poisson family taken to be 1) However, if I estimate the dispersion coefficient by means of: sum(residuals(fit,type="pearson")^2)/fit$df.res I obtained 2.4. This is theory means over-dispersion since
2008 Nov 14
2
GAM and Poisson distribution
Hi -I'm running a GAM with 7 explanatory variables with a Poisson error structure. All of the variables are continuous so I'm getting error messages in R. cod.fall.full.gam.model<-gam(Kept.CPUE~s(HOUR)+s(LAT_dec)+s(LONG_dec)+s(meantemp_C)+s(meandepth_fa)+s(change_depth)+s(seds), data=cod.fall.version2,family=poisson) In dpois(y, mu, log = TRUE) ... : non-integer x = 5.325517
2010 Jul 06
1
nls + quasi-poisson distribution
Hello R-helpers, I would like to fit a non-linear function to data (Discrete X axis, over-dispersed Poisson values on the Y axis). I found the functions gnlr in the gnlm package from Jim Lindsey: this can handle nonlinear regression equations for the parameters of Poisson and negative binomial distributions, among others. I also found the function nls2 in the software package
2009 Oct 05
2
GLM quasipoisson error
Hello, I'm having an error when trying to fit the next GLM: >>model<-glm(response ~ CLONE_M + CLONE_F + HATCHING +(CLONE_M*CLONE_F) + (CLONE_M*HATCHING) + (CLONE_F*HATCHING) + (CLONE_M*CLONE_F*HATCHING), family=quasipoisson) >> anova(model, test="Chi") >Error in if (dispersion == 1) Inf else object$df.residual : missing value where TRUE/FALSE needed If I fit
2009 Aug 13
2
Fitting a quasipoisson distribution to univariate data
Dear all, I am analyzing counts of seabirds made from line transects at sea. I have been fitting Poisson and negative binomial distributions to the data using the goodfit function from the vcd library. I would also like to evaluate how well a quasi-poisson distribution fits the data. However, none of the potentially suitable functions I have identified (goodfit(vcd), fitdistr(MASS),
2011 May 18
1
Dataset Quasi Poisson
Hello, I'm looking for a dataset for Quasipoisson regression. The result must be significantly different from the classic poisson regression. You can help me? Please It is for my last university exam Thanks a lot -- View this message in context: http://r.789695.n4.nabble.com/Dataset-Quasi-Poisson-tp3533060p3533060.html Sent from the R help mailing list archive at Nabble.com.
2000 May 09
4
Dispersion in summary.glm() with binomial & poisson link
Following p.206 of "Statistical Models in S", I wish to change the code for summary.glm() so that it estimates the dispersion for binomial & poisson models when the parameter dispersion is set to zero. The following changes [insertion of ||dispersion==0 at one point; and !is.null(dispersion) at another] will do the trick: "summary.glm" <- function(object, dispersion =
2008 Apr 17
2
glm(quasipoisson) with non-integer response
Hi, I have count data that have been meddled with enough to make them non integers. Using glm(poisson) returns a "non integer" error but glm(quasipoisson) does not. Just wondering if anyone knows if I am violating the assumptions of a quasipoisson error structure by using these non-integer response data? Thanks! I'd welcome your thoughts and/or references... Mark