similar to: Reference Material for Multiple Imputation

Displaying 20 results from an estimated 100000 matches similar to: "Reference Material for Multiple Imputation"

2005 May 04
3
Imputation
  I have timeseries data for some factors, and some missing values are there in those factors, I want impute those missing values without disturbing the distribution of that factor, and maintaining the correlation with other factors. Pl. suggest me some imputation methods. I tried some functions in R like aregImpute, transcan. After the imputation I am unable to retrive the data with imputed
2005 Jan 19
1
Imputation missing observations
>From Internet I downloaded the file Hmisc.zip and used it for R package updation. and R gave the message 'Hmisc' successfull unpacked. But when I use the functions like aregImpute the package is displaying coundn't find the function Where as in help.search it is giving that use of the function >
2024 Mar 13
0
clusterMI: Cluster Analysis with Missing Values by Multiple Imputation
Dear all, I am pleased to announce the release of a new package named 'clusterMI' on CRAN. clusterMI allows clustering of incomplete observations by addressing missing values using multiple imputation. For achieving this goal, the methodology consists in three steps: 1. missing data imputation using tailored imputation models: four multiple imputation methods are proposed, two are
2024 Mar 13
0
clusterMI: Cluster Analysis with Missing Values by Multiple Imputation
Dear all, I am pleased to announce the release of a new package named 'clusterMI' on CRAN. clusterMI allows clustering of incomplete observations by addressing missing values using multiple imputation. For achieving this goal, the methodology consists in three steps: 1. missing data imputation using tailored imputation models: four multiple imputation methods are proposed, two are
2003 Jun 12
3
Multiple imputation
Hi all, I'm currently working with a dataset that has quite a few missing values and after some investigation I figured that multiple imputation is probably the best solution to handle the missing data in my case. I found several references to functions in S-Plus that perform multiple imputation (NORM, CAT, MIX, PAN). Does R have corresponding functions? I searched the archives but was not
2003 Dec 08
1
Design functions after Multiple Imputation
I am a new user of R for Windows, enthusiast about the many functions of the Design and Hmisc libraries. I combined the results of a Cox regression model after multiple imputation (of missing values in some covariates). Now I got my vector of coefficients (and of standard errors). My question is: How could I use directly that vector to run programs such as 'nomogram', 'calibrate',
2011 Jul 25
0
Debugging multiple imputation in mice
Hello all, I am trying to impute some missing data using the mice package. The data set I am working with contains 125 variables (190 observations), involving both categorical and continuous data. Some of these variables are missing up to 30% of their data. I am running into a peculiar problem which is illustrated by the following example showing both the original data (blue) and the imputed
2012 Mar 07
0
Multiple imputation using mice
Dear all, I am trying to impute data for a range of variables in my data set, of which unfortunately most variables have missing values, and some have quite a few. So I set up the predictor matrix to exclude certain variables (setting the relevant elements to zero) and then I run the imputation. This works fine if I use predictive mean matching for the continous variables in the data set. When I
2007 Jul 17
0
Multiple imputation with plausible values already in the data
Hello, this is not really an R-related question, but since the posting guide does not forbid asking non-R questions (even encourages it to some degree), I though I'd give it a try. I am currently doing some secondary analyses of the PISA (http://pisa.oecd.org) student data. I would like to treat missing values properly, that is using multiple imputation (with the mix package). But I am not
2012 Jul 05
0
Confused about multiple imputation with rms or Hmisc packages
Hello, I'm working on a Cox Proportional Hazards model for a cancer data set that has missing values for the categorical variable "Grade" in less than 10% of the observations. I'm not a statistician, but based on my readings of Frank Harrell's book it seems to be a candidate for using multiple imputation technique(s). I understand the concepts behind imputation, but using
2012 May 28
0
stats q: multiple imputation and quantile regression
Dear list, this is perhaps more of a statistics question than an R question, but perhaps someone could help me out anyway. I'm doing sociological research and am currently in the process of familiarizing myself with the basic concepts of multiple imputation. Eventually, my goal is to perform quantile regression on a large data set, where one non-negative discrete variable contains missing
2011 Aug 01
1
Impact of multiple imputation on correlations
Dear all, I have been attempting to use multiple imputation (MI) to handle missing data in my study. I use the mice package in R for this. The deeper I get into this process, the more I realize I first need to understand some basic concepts which I hope you can help me with. For example, let us consider two arbitrary variables in my study that have the following missingness pattern: Variable 1
2011 Feb 07
1
multiple imputation manually
Hi, I want to impute the missing values in my data set multiple times, and then combine the results (like multiple imputation, but manually) to get a mean of the parameter(s) from the multiple imputations. Does anyone know how to do this? I have the following script: y1 <- rnorm(20,0,3) y2 <- rnorm(20,3,3) y3 <- rnorm(20,3,3) y4 <- rnorm(20,6,3) y <- c(y1,y2,y3,y4) x1 <-
2009 Oct 21
0
multiple imputation with mix package
I am running into a problem using 'mix' for multiple imputation (over continuous and categorical variables). For the way I will be using this I would like to create an imputation model on some training data set and then use this model to impute missing values for a different set of individuals (i.e. I need to have a model in place before I receive their information). I expected that all
2003 Jul 27
1
multiple imputation with fit.mult.impute in Hmisc
I have always avoided missing data by keeping my distance from the real world. But I have a student who is doing a study of real patients. We're trying to test regression models using multiple imputation. We did the following (roughly): f <- aregImpute(~ [list of 32 variables, separated by + signs], n.impute=20, defaultLinear=T, data=t1) # I read that 20 is better than the default of
2010 Aug 10
1
Multiple imputation, especially in rms/Hmisc packages
Hello, I have a general question about combining imputations as well as a question specific to the rms and Hmisc packages. The situation is multiple regression on a data set where multiple imputation has been used to give M imputed data sets. I know how to get the combined estimate of the covariance matrix of the estimated coefficients (average the M covariance matrices from the individual
2008 Nov 26
1
multiple imputation with fit.mult.impute in Hmisc - how to replace NA with imputed value?
I am doing multiple imputation with Hmisc, and can't figure out how to replace the NA values with the imputed values. Here's a general ourline of the process: > set.seed(23) > library("mice") > library("Hmisc") > library("Design") > d <- read.table("DailyDataRaw_01.txt",header=T) > length(d);length(d[,1]) [1] 43 [1] 2666
2011 Jun 21
0
R crash when using pan for multiple imputation
Dear R-List, I apologize for not posting a reproducible example - the reason is that I actually do not succeed in reproducing my specific problem with generated data. Let me still describe the problem: I want to impute missing data using the "pan" package. a) It works, when I use a fraction of my data (e.g. 200 out of 44000 cases) b) It works, when I generate a dataset of equal
2011 Oct 10
1
Multiple imputation on subgroups
Dear R-users, I want to multiple impute missing scores, but only for a few subgroups in my data (variable 'subgroups': only impute for subgroups 2 and 3). Does anyone knows how to do this in MICE? This is my script for the multiple imputation: imp <- mice(data, m=20, predictorMatrix=pred, post=post, method=c("", "", "", "",
2009 Apr 24
1
Multiple Imputation in mice/norm
I'm trying to use either mice or norm to perform multiple imputation to fill in some missing values in my data. The data has some missing values because of a chemical detection limit (so they are left censored). I'd like to use MI because I have several variables that are highly correlated. In SAS's proc MI, there is an option with which you can limit the imputed values that are